# 茂名天保再生资源发展有限公司 2023年土壤和地下水自行监测报告

委托单位: 茂名天保再生资源发展有限公司

编制单位:广东中科检测技术股份有限公司

编制时间: 2024年1月

## 目 录

| 1, | 概述                     | 1    |
|----|------------------------|------|
|    | 1.1 任务来源               | 1    |
|    | 1.2 编制目的               | 1    |
|    | 1.3 编制依据               | 1    |
|    | 1.3.1 法律法规和部门规章        | 1    |
|    | 1.3.2 地方法规和政策文件        | 2    |
|    | 1.3.3 技术导则与标准规范        | 3    |
|    | 1.3.4 其他相关文件           | 3    |
|    | 1.4 工作程序               | 4    |
| 2、 | 重点单位概况                 | 6    |
|    | 2.1 区域自然环境概况           | 6    |
|    | 2.1.1 地理位置             | 6    |
|    | 2.1.2 地形地貌及地质          | 8    |
|    | 2.1.3 气候气象             | 9    |
|    | 2.1.4 河流水文             | . 10 |
|    | 2.1.5 区域地下水功能区划        | . 12 |
|    | 2.1.6 区域土壤类型           | . 14 |
|    | 2.2 重点单位基本情况           | . 16 |
|    | 2.3 地块利用现状和历史          | . 19 |
|    | 2.3.1 地块使用现状           | . 19 |
|    | 2.3.2 地块历史沿革           | . 20 |
|    | 2.4 地块地质和水文地质条件        | . 29 |
|    | 2.4.1 地质岩土层划分及描述       | . 29 |
|    | 2.4.2 水文地质条件           | .31  |
|    | 2.5 相邻地块的现状和历史         | .32  |
|    | 2.5.1 相邻地块使用现状         | . 32 |
|    | 2.5.2 相邻地块历史沿革         | . 33 |
|    | 2.6 敏感目标分布             | .36  |
|    | 2.7 历史环境调查与监测结果        | .38  |
|    | 2.7.1 2019 年土壤及地下水自行监测 | . 39 |
|    | 2.7.2 2022 年土壤及地下水自行监测 | .48  |
| 3、 | 重点单位生产及污染防治情况          | .61  |
|    | 3.1 生产概况               | .61  |
|    | 311项目组成                | 61   |

|    | 3.1.2 主要原辅材料及产品           | 61  |
|----|---------------------------|-----|
|    | 3.2 设施布置                  | 63  |
|    | 3.2.1 厂区平面布置              | 63  |
|    | 3.3 各设施生产工艺与污染防治情况        | 66  |
|    | 3.3.1 生产工艺及产污环节           | 66  |
|    | 3.3.2 产排污及污染防治措施          | 86  |
|    | 3.4 各设施涉及的有毒有害物质分析        | 92  |
| 4、 | 自行监测方案                    | 104 |
|    | 4.1 重点监测单元识别与分类           | 104 |
|    | 4.1.1 重点单元情况              | 104 |
|    | 4.1.2 识别分类结果及原因           | 106 |
|    | 4.2 监测点位布设方案              | 107 |
|    | 4.2.1 重点单元及相应监测点/监测井的布设位置 | 107 |
|    | 4.2.2 现有地下水监测井情况          | 111 |
|    | 4.2.3 识别关注污染物             | 111 |
|    | 4.3 监测指标与监测频次             | 111 |
|    | 4.3.1 监测指标的选取             | 111 |
|    | 4.3.2 监测频次                | 116 |
|    | 4.4 风险筛选值的选取              | 117 |
|    | 4.4.1 土壤风险筛选值             | 117 |
|    | 4.4.2 地下水风险筛选值            | 118 |
|    | 4.4.3 风险控制值推导过程           | 119 |
| 5、 | 现场采样和实验室分析                | 129 |
|    | 5.1 现场布点及点位调整情况           | 129 |
|    | 5.2 土壤钻孔和建井               | 129 |
|    | 5.2.1 土壤钻孔                | 129 |
|    | 5.2.2 地下水监测井建设            | 129 |
|    | 5.3 样品采集                  | 129 |
|    | 5.3.1 土壤样品采集              | 129 |
|    | 5.3.2 地下水样品采集             | 136 |
|    | 5.4 样品保存与流转               | 139 |
|    | 5.4.1 样品保存                | 139 |
|    | 5.4.2 样品流转                | 141 |
|    | 5.5 样品分析测试                | 145 |
|    | 5.6 质量保证与质量控制             | 148 |

|    | 5.6.1 质量控制机制与流程          | 148 |
|----|--------------------------|-----|
|    | 5.6.2 现场采样过程中质量控制        | 148 |
|    | 5.6.3 实验室质量保证和质量控制       | 150 |
|    | 5.6.4 监测过程中受到干扰时的处理      | 152 |
|    | 5.6.5 报告及原始记录的质量控制       | 152 |
|    | 5.6.6 质量控制结论             | 163 |
| 6、 | 监测结果分析与评价                | 164 |
|    | 6.1 土壤自行监测结果分析           | 164 |
|    | 6.1.1 土壤各点位监测结果统计        | 164 |
|    | 6.1.2 土壤污染物检测结果分析        | 169 |
|    | 6.2 地下水自行监测结果分析          | 171 |
|    | 6.2.1 地下水各点位监测结果统计       | 171 |
|    | 6.2.2 地下水污染物检测结果分析       | 175 |
|    | 6.3 土壤和地下水自行监测结果小结       | 178 |
| 7、 | 结论与建议措施                  | 179 |
|    | 7.1 监测结论                 | 179 |
|    | 7.2 企业针对监测结果拟采取的主要措施建议   | 179 |
|    | 7.2.1 拟采取的措施             | 179 |
|    | 7.2.2 后续管理要求             | 179 |
| 8, | 附件                       | 182 |
|    | 8.1 实验室资质证书              | 182 |
|    | 8.2 重点监测单元清单             | 184 |
|    | 8.3 采样、洗井相关内容            | 185 |
|    | 8.3.1 地下水采样前洗井记录         | 185 |
|    | 8.3.2 地下水采样记录            | 189 |
|    | 8.3.3 土壤采样记录             | 191 |
|    | 8.4 2023 年土壤和地下水检测报告     | 201 |
|    | 8.4.1 2023 年土壤和地下水检测报告   | 201 |
|    | 8.4.2 2023 年土壤和地下水分包检测报告 | 212 |
|    | 8.5 2023 年土壤和地下水质量控制报告   | 217 |

#### 1、概述

## 1.1 任务来源

为贯彻落实《中华人民共和国土壤污染防治法》第 21 条、《工矿用地土壤环境管理办法(试行)》(生态环境部 3 号令)第 5 条,防范土壤污染风险,根据《关于印发 2023 年茂名市重点排污单位名录的通知》(2023 年 3 月)要求,茂名天保再生资源发展有限公司属于茂名市 2023 年土壤污染重点监管单位,需要进行土壤和地下水自行监测工作。

为此茂名天保再生资源发展有限公司(以下简称"茂名天保公司")委托广东中科检测技术股份有限公司(以下简称"广东中科")对本项目进行土壤和地下水自行监测工作,广东中科在接到委托后,收集了企业 2022 年自行监测方案和自行监测报告等资料,2023 年 12 月 29 日进行了土壤和地下水采样,根据 2022 年自行监测方案和监测报告,结合 2023 年土壤和地下水监测结果编制了《茂名天保再生资源发展有限公司 2023 年土壤和地下水自行监测报告》。

## 1.2 编制目的

为贯彻落实《中华人民共和国土壤污染防治法》第 21 条、《工矿用地土壤环境管理办法(试行)》(生态环境部 3 号令)第 5 条相关要求,进一步加强土壤污染防治与管理工作,掌握重点监管单位土壤环境质量状况、了解重点单位土壤环境是否污染和受到污染的程度,确定重点单位厂区内潜在的污染类型、程度及分布范围,需要对茂名天保公司厂区土壤和地下水进行自行监测,需委托具有CMA资质证书的第三方检测公司对厂区土壤、地下水环境进行检测、编制土壤和地下水自行监测报告并在环保公众网和相关网站平台上公开自行监测信息。

## 1.3 编制依据

## 1.3.1 法律法规和部门规章

- (1) 《中华人民共和国环境保护法》(2015年1月1日起施行);
- (2) 《中华人民共和国土壤污染防治法》(2018年8月31日通过,2019

#### 年1月1日起施行);

- (3)《中华人民共和国水污染防治法》(2017年6月27日第二次修正);
- (4)《中华人民共和国大气污染防治法》(2018年10月26日第二次修正):
- (5)《中华人民共和国固体废物污染环境防治法》(2020年4月29日第二次修正);
  - (6) 《土壤污染防治行动计划》(国发〔2016〕31号);
- (7)《污染地块土壤环境管理办法(试行)》(环境保护部令第 42 号, 2017 年 7 月 1 日起施行):
- (8) 《建设用地土壤环境调查评估技术指南》(原环境保护部公告 2017 年第 72 号, 2017 年 12 月 15 日印发);
- (9)《重点监管单位土壤污染隐患排查指南(试行)》(生态环境部公告 2021 年第 1 号):
- (10)《关于印发重点行业企业用地调查系列技术文件的通知》(环办土壤 [2017]67号);
- (11) 《地下水污染健康风险评估工作指南》 (环办土壤函[2019]770 号, 2019 年 9 月):
- (12) 关于发布《优先控制化学品名录(第一批)》的公告(公告 2017 年 第 83 号, 2017 年 12 月);
- (13) 关于发布《优先控制化学品名录(第二批)》的公告(公告 2020 年 第 47 号, 2020 年 11 月)。
  - (14) 《国家危险废物名录(2021年版)》(生态环境部令第15号)。

## 1.3.2 地方法规和政策文件

- (1)《广东省实施〈中华人民共和国土壤污染防治法〉办法》(2019年3月1日)
  - (2)《广东省土壤污染防治行动计划实施方案》(粤府(2016)145号);
  - (3)《广东省土壤环境保护和综合治理方案》(粤环〔2014〕22号);
- (4)《广东省重点行业企业用地土壤污染状况调查布点采样方案技术要点 (试行)》(粤环函[2020]24号);

- (5)《广东省生态环境厅关于进一步加强土壤污染重点监管单位环境管理的通知》(粤环发[2021]8号)(2022年1月10日起施行);
  - (6)《关于印发 2023 年茂名市重点排污单位名录的通知》(2023 年 3 月);

## 1.3.3 技术导则与标准规范

- (1)《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019);
- (2)《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019):
- (3)《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019);
- (4) 《建设用地土壤污染风险评估技术导则》(HJ 25.3-2019);
- (5) 《土壤环境监测技术规范》(HJ/T 166-2004);
- (6) 《地下水环境监测技术规范》(HJ 164-2020);
- (7) 《地下水监测井建设规范》(DZ/T 0270-2014);
- (8)《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018);
  - (9) 《地下水质量标准》(GB/T14848-2017);
  - (10) 《生活饮用水卫生标准》(GB5049-2022);
  - (11)《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021) (2022年1月1日起施行);
    - (12) 《岩土工程勘察规范》(GB50021-2001)(2009版)

#### 1.3.4 其他相关文件

- (1)《茂名天保再生资源发展有限公司废弃电器电子产品及报废机动车回 收拆解技改扩能项目报告表》(2021年);
- (2)《茂名天保再生资源发展有限公司废弃电器电子产品及报废机动车回收拆解技改扩能项目安全现状评估报告》(2022年):
- (3)《茂名天保再生资源发展有限公司 2022 年度第三季度检测报告》(2022年):
- (4)《茂名天保再生资源发展有限公司废弃电器电子产品及报废机动车回 收拆解技改扩能项目(一期工程)竣工环境保护验收报告》(2021 年);
- (5)《茂名天保再生资源发展有限公司土壤和地下水自行监测工作方案》 (2019年):

- (6) 《茂名天保再生资源发展有限公司排污许可证》(2019年);
- (7) 《茂名天保再生资源发展有限公司环境风险评估报告》(2019年);
- (8)《茂名天保再生资源发展有限公司突发环境事件应急预案》(2019年);
- (9)《茂名天保再生资源发展有限公司土壤和地下水自行监测调查报告》 (2020年);
- (10)《茂名天保再生资源发展有限公司报废机动车拆解项目岩土工程勘察报告》;
- (11)《茂名天保再生资源发展有限公司 2022 年土壤和地下水自行监测工作方案》:
- (12) 《茂名天保再生资源发展有限公司 2022 年土壤和地下水自行监测报告》(2023 年 1 月)。

## 1.4 工作程序

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)、《广东省生态环境厅关于进一步加强土壤污染重点监管单位环境管理的通知》(粤环发[2021]8号)的相关要求,结合项目实际情况,本项目自行监测的工作流程见图 1.4-1。

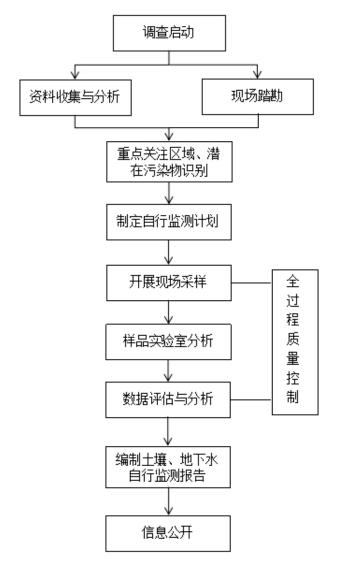



图 1.4-1 土壤及地下水自行检测工作程序

## 2、重点单位概况

## 2.1 区域自然环境概况

## 2.1.1 地理位置

茂名市是中国华南地区最大的石化基地、中国南方著名油城,位于广东省西南沿海,属于热带向亚热带过度地带。茂名市东边与阳江市的阳春市、阳西县交界,西边与湛江市的廉江、吴川毗邻,北边与云浮市的罗定市及广西区的岑溪、容县、北流接壤,南临南海。茂名市的土地总面积 11425 平方公里,海岸线长约 166 公里。

茂南区位于广东省西南部、茂名市南部,东毗电白,南邻吴川,西接化州,北连高州。地处于东经 110°44′~110°55′,北纬 21°32′~21°49′之间。 公馆镇隶属于广东省茂名市茂南区,位于茂南区西郊,北与金塘镇和高州市石鼓镇接壤,南与镇盛镇和吴川市浅水镇相接,东与新坡镇毗邻。

茂名天保再生资源发展有限公司位于茂名市茂南区公馆镇荔枝塘枫林垌 268 号大院,中心经纬度为 N21.689608°, E110.823265°。项目地理位置见图 2.1-1。

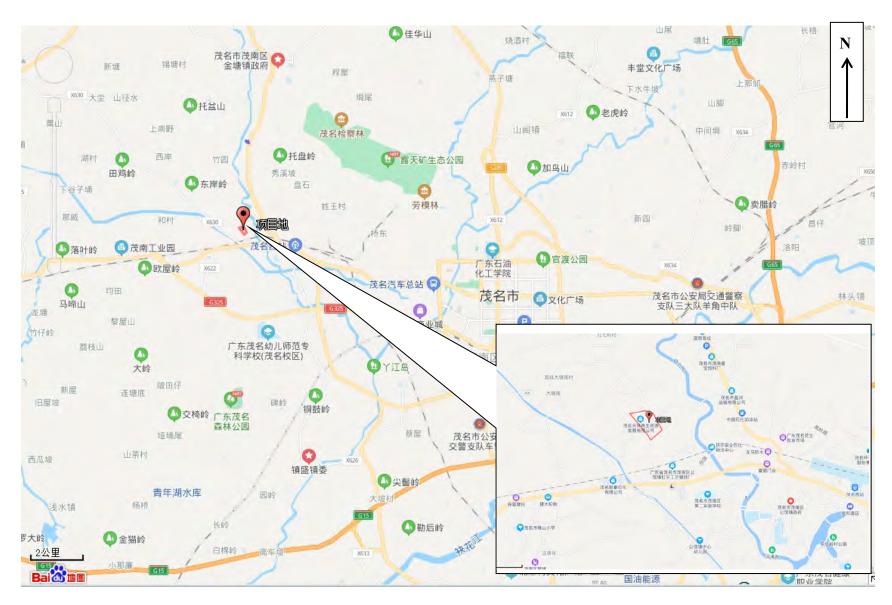



图 2.1-1 地理位置图

## 2.1.2 地形地貌及地质

#### (1) 地形地貌

茂南区总地势西北高,东南低。西北为低丘台地,东南是平原。茂南区的地貌属于台地平原,地势平缓,台地和平原共 482.3 平方公里,占总面积 99.02%。早古生代(距今 400 百万年前)时,茂南属华南边缘海槽的一部分, 沉积形成了巨厚的泥砂质复理式地层。早古生代末期地壳强烈运动,全区岩层发生褶皱并隆起成山,奠定了今日茂南地貌的基础。雄踞茂南东北、海拔高达 941 米的浮山岭就是在那时形成的。晚古生代开始延至中生代中期(130-400 百万年前),茂南--直是"华夏古陆"的组成部分。经过漫长的风化剥蚀时期之后,古老的茂南山地已被逐渐夷平。中生代晚期(70 百万-130 百万年前)早世,茂南一吴川地区受断裂作用,地壳下陷,成为山间盆地。源自周围山区的山洪和河水携带来大量的砂石,堆积在低洼之处。晚世,茂南西部的地裂进一步发展,大量岩浆自地壳内部猛烈喷发出来,形成公馆至锡塘间的一-系列火山地貌。

#### (2) 地质

茂名市地质构造为寒武纪以前的古老变质岩、古生代变质水成岩、中生代侵入花岗岩、新生代沉积岩和喷出岩、近代冲积物等不同地质年代岩石及其风化物构成。

母岩和母质种类繁多,分布变化复杂。母岩以花岗岩、片麻岩为主,次为砂岩、页岩、片岩、板岩,尚有少量石灰岩、凝灰岩分布。母质有洪积物、河流冲积物、浅海沉积物、滨海沉积物、坡积物等。信宜市西部的北界花岗岩为印支期第三次入侵的岩基类型的岩体,面积约176平方千米,中粒及细中粒云母花岗岩。北界岩体周围一-般为白垩纪花岗岩,多为黑云花岗,广泛分布在信宜市、高州市、化州市、电白区等地。东北部变质岩类的片麻岩、混合岩。分布在信宜市中、东部,高州市东北部,电白区东北部构成云开大山的主体。混合砂页岩,分布在信宜市北部、高州城及化州城以南包括茂南区至电白区七径镇。石灰岩,零星分布在信宜市贵子镇、洪冠镇、平塘镇,高州大坡镇、长坡镇、古丁镇,化州市文楼镇,电白县黄岭镇。红色砂页岩主要分布在高州市谢牛岭、石鼓,化州市南盛,茂南区金塘以南至鳌头,电白区旦场、羊角等地。第四纪浅海沉积物,分布在化州市,高州市、电白区南部海拔50米高程线以下地区,表层有铁结核、铁结盘,及大量陨石散布。河流冲积物,分布在鉴江、曹江、罗江、袂花江、沙琅江中下游沿岸地区。滨海沉积物,分布在电白沿海。

第三系地形地貌分布于茂南除公馆、镇盛两镇外的其余地区和高州的石鼓、镇江,

化州的丽岗,电白的羊角、坡心等镇,相连成-大片,地史上称为"茂名第三纪盆地",是一套河湖沼泽相含煤含油地层。自下而上分以下地层组:

铜鼓岭组(古新统):下部为紫红色砾岩夹砂岩,中部为棕红色中细砂岩,上部为暗棕红色砂岩和砂砾岩,厚度大于926米。

油柑窝组(始一渐新统):下部为砂砾岩、砂岩和泥岩,上部为油页岩夹泥岩、炭质页岩和褐煤层,含鱼类、龟类、鳄鱼化石,厚150米。与此层相当,在电白县的旦场有丹霞群,为形成于干旱盆地环境的红色砂岩、粉砂岩和砾岩,厚730米。

黄牛岭组(中新统):砂砾岩、砂岩夹泥岩和含油砂岩透镜体,产植物化石,厚 200 米。

尚村组(中新统): 泥岩、页岩、粉细砂岩夹油页岩及煤线,富含植物化石和腹足类,厚 547 米。

老虎岭组(上新统): 砂砾岩夹粘土透镜体,厚度大于300米。 高棚岭组(上新统): 为洪积相砾岩和砂岩,最大厚度1800米。

## 2.1.3 气候气象

茂名市位于广东省的西南部,地处北回归线以南,濒临南海,属南亚热带季风海洋性气候。据茂名市气象台多年资料统计,年平均气温 23.0℃,绝对最高气温 37.8℃绝对最低气温 1.79C;年平均降雨量为 1748.7mm,月最大降雨量为 672.1mm,日最大降雨量为 311.7mm,时最大降雨量为 124.1mm,十分钟最大降雨量为 325mm,历年平均降雨天数为 153 天,雨量集中在每年的 4-9 月,占全年雨量的 82.8%;年平均相对湿度为 81.4%,夏季平均相对湿度为 83%,冬季平均相对湿度为 77%;年日照时数为 1913.1 小时,日照百分率 42%,总云量年均值为 6.7,低云量为 5.2。

根据茂名市气象站近年资料统计表明,项目所在区域夏季主要吹 SE 风,冬季以 N 风和 SE 风为主。年平均静风频率较低,为 7.4%,秋季最高,占 10.8%,春季最低,占 5.3%。年平均风速为 2.6m/s,各月份的平均风速变化范围在 2.2-3.0m/s 之间,三月份风速较大,为 2.7m/s,十--月、十二月较小,为 2.2m/s.偏北风的风速比偏南风的风速略大。茂南区位于北回归线以南的热带北缘,属热带季风气候,夏长冬短,日照长,气候温和。雨量丰富,分布不均,台风、干旱、海潮、雷电威胁较大。

光热: 茂南区太阳辐射较强,日照时间长。7-10 月份日照时数量长,分别为 215.2 小时和 194.2 小时。2.3 月日照时间短,分别为 77.6 小时和 79 小时。光能年平均太阳幅

射总量 110.28 千卡/平方厘米。

气温: 茂南区属亚热带季风气候,热季时间较长。寒季时间短。7月气温最高,月均 28.99 $^{\circ}$ 。1月气温最低,月均 15.8 $^{\circ}$ ,年极端高温 38.1 $^{\circ}$ (1958 年 5 月 9 日),年极端低温 2.8 $^{\circ}$ (1967 年 1 月 17 日)。从热量条件看,无气象意义上的冬天。

## 2.1.4 河流水文

#### (1) 河流水系

茂名市多年平均降雨量 1748.7mm, 年径流和降雨量在地理分布上相似, 自西南向东北递增, 多年平均径流深为 961mm, 相应径流量 110 亿立方米, 另有过境客水约 8亿立方米, 多年平均径流模数为 30.5 升/秒.平方公里。年径流深变化范围在600m~1800mm之间。

茂名市集水面积 100 平方公里以上的河流有 39 条,属鉴江水系的 28 条(主要包括鉴江干流、罗江、袂花江、曹江、大井河、小东江、陵江等),珠江水系的 9 条(主要包括黄华江、罗定江),独流出海的 2 条。

鉴江是粵西沿海最大的河流,支流众多,穿流市境,先后汇入干流,构成叶脉状的鉴江水系。流域面积 9464 平方公里,其中市境内集水面积 8019 平方公里(另 675 平方公里在广西、770 平方公里在湛江吴川),占全市总面积的 70%,1985 年,鉴江流域在市境内有耕地 218 万亩,占全市总耕地 78.18%,有人口 324 万人,占全市人口 76.24%。

鉴江干流先后绕信宜、高州、化州等县城而过。鉴江二级支流小东江,穿流茂名石油城。鉴江水系在茂名市境内主要是鉴江干流,在市内的鉴江-级支流有罗江、袂花江、曹江、大井河,二级支流有小东江、陵江等。鉴江发源于信宜市东镇镇的虎豹坑,流经信宜、高州、化州、吴川四市,从吴川的黄坡镇入南海。

鉴江干流全长 23 公里, 河宽 50-250 米, 河水深 0.5~3.0 米, 在茂名市境内长 186 公里, 坡降 0.374%o, 流域面积 9464 平方公里, 历史最大洪峰流量 5850m/秒, 历年平均流量 166.6m/秒。

被花江,是鉴江的第二大支流,发源于电白鹅凰幛南坡,向西南流经电白县的沙琅、霞洞、林头、羊角、坡心,茂南区的袂花鳌头,到吴川市兰石瓦窑口与小东江汇合,于梅禄注入鉴江。干流全长 112 公里,流域面积 2516 平方公里,在茂名市境内的集水面积 2284 平方公里,干流河段长 1.09%,有庙背水、大社河、黄岭河、观珠河、小东江等主要支流。

小东江,鉴江二级支流,为袂花江的最大支流,源出于高州市内的官庄岭下,流经高州的根子、茂南羊角、茂南山阁至新坡镇莲塘与泗水汇合(从泗水汇合以下河段,当地称小东江),穿越茂名市区,至新坡合水又与公馆河汇合,过镇盛,至鳌头衍水后,进入吴川境内,于瓦窑村汇入袂花江。干流全长 67 公里,集水面积 1142 平方公里,在茂名市境内,小东江河段长 61 公里,集水面积 990 平方公里。

项目东侧 500 米处为白沙河,小东江的--条支流,发源于高州泗水谢牛岭(左源)及石仔岭街道办塘背五指山(右源),途经高州泗水镇、金山街道、石鼓镇及茂南区的金塘镇、公馆镇,在茂南区新坡镇合水汇入小东江,全长约 38 公里。

#### (2) 区域地下水

茂名市地下水类型由松散岩类孔隙水、红层孔隙裂隙水、层状基岩裂隙水、块状基岩裂隙水和少量碳酸盐岩裂隙溶洞水和玄武岩孔洞裂隙水组成,其中北部山区以块状基岩裂隙水为主,丘陵区以层状基岩裂隙水和红层孔隙裂隙水为主,盆地区上部松散岩类孔隙水,下部为红层孔隙裂隙水和层状基岩裂隙水,南部平原区以松散岩类孔隙水为主,局部有玄武岩孔洞裂隙水。

山区、丘陵地区下水补给以大气降雨为主:盆地区、平原区上部松散岩类孔隙水以大气降雨为主,次为地表水,浅层为潜水,中深层为承压水,水量丰富,下部层状基岩裂隙水、红层孔隙裂隙水主要补给来源为侧向补给和上部含水层的越流补给,多为承压水:潜水动态随季节变化较大,承压水动态较为稳定。

根据查阅全国地质资料馆,企业所在的 1:20 万水文地质图如下,地块所在区域为富水程度弱的碎屑岩类含水岩组。见下图 2.1-2。

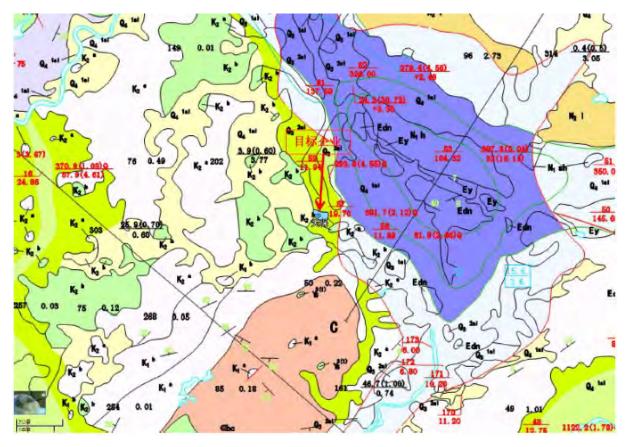



图 2.1-2 地块所在区域水文地质图(1: 20 万)

## 2.1.5 区域地下水功能区划

根据《广东省地下水功能区划》(粤水资源[2009]19号)图 1 广东省浅层地下水功能区划图和图 18 茂名市浅层地下水功能区划图,地块所在区域浅层地下水位于"粤西桂南沿海诸河茂名市城区地下水水源涵养区(代码 H094409002T04)",水质现状为 I-IV类,水质保护目标为III类,执行《地下水质量标准》(GB/T14848-2017)中的 III 类水质标准。

地块在广东省浅层地下水功能区划图中的位置见图 2.1-3, 地块在茂名市浅层地下水功能区划图中的位置见图 2.1-4。本地块不涉及地下水饮用水源补给径流区、保护区以及集中式饮用水水源地保护区。

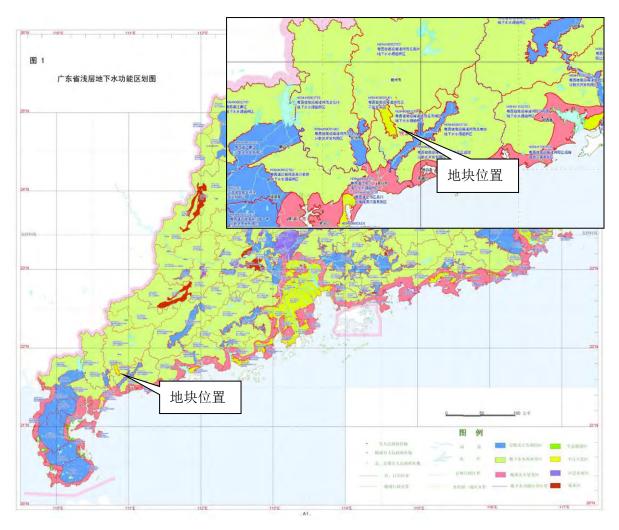



图 2.1-3 地块在广东省浅层地下水功能区划图中的位置

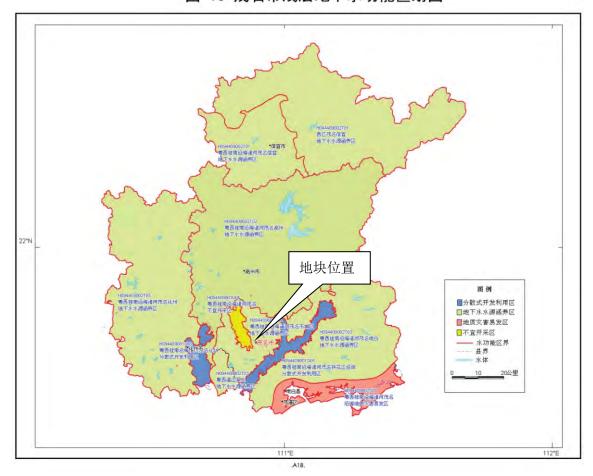



图 18 茂名市浅层地下水功能区划图

图 2.1-4 项目所在区域浅层地下水功能区划图

## 2.1.6 区域土壤类型

根据土壤信息服务平台(http://www.soilinfo.cn/map/index.aspx#)查询结果,结合广东省1:100万土壤类型图(来源于国家地球系统科学数据中心—土壤分中心)可知:项目地块区域土壤类型为砖红壤,土壤信息服务平台查询结果见图2.1-5。地块在广东省土壤类型图中的位置见图2.1-6。



图 2.1-5 土壤信息服务平台查询结果截图

## 广东省1:100万土壤类型图(2018年)

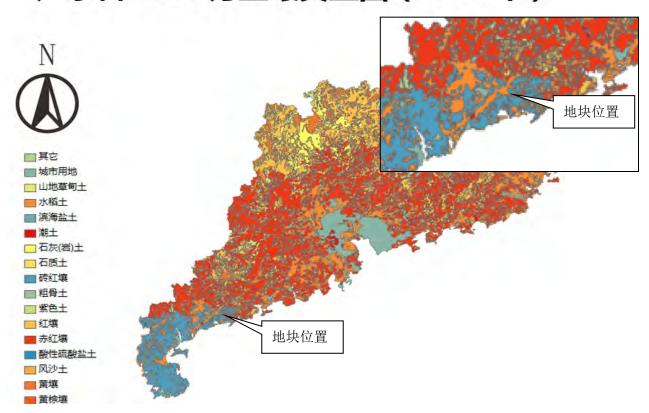



图 2.1-6 地块在广东省土壤类型图中的位置

## 2.2 重点单位基本情况

#### (1) 企业基本信息

茂名天保再生资源发展有限公司成立于 2010 年 9 月 29 日,注册地址为:茂名市茂南区公馆镇荔枝塘枫林垌 268 号大院,公司类型为其他有限责任公司,法定代表人为梁练。经营范围:收购和销售;生产性废旧金属、非生产性废旧金属,其他废旧物资(不含进口固体废物、危险废物);废电子、电器资源化处理,报废机动车回收拆解。

统一社会信用代码: 914409025625769099。公司现有员工 150 人,其中安全管理人员 1 人。公司员工实行单班制,每班工作 8 小时,年工作日 330 天。

#### (2) 企业用地范围

茂名天保再生资源发展有限公司规划用地面积为 47160m², 主要涉及拆解车间、拆解原料堆存场、物料仓库、危废暂存区等重点区域, 重点设施包括拆解处理线、废水池等, 因此本次自行监测范围主要为实际利用的面积, 具体见图 2.2-1 及图 2.2-2。拐点坐标见表 2.2-1。拐点坐标采用 2000 国家大地坐标系。

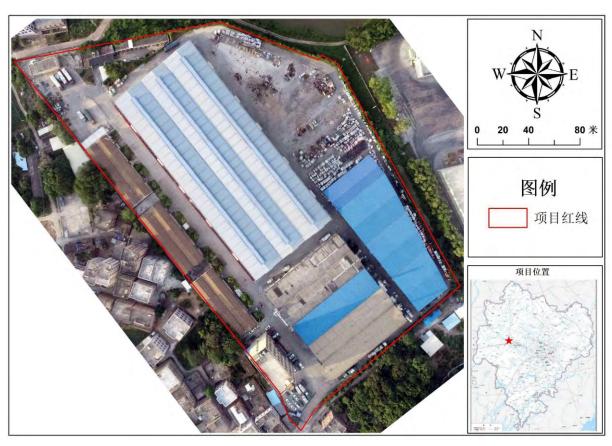



图 2.2-1 地块红线范围图 (2022 年 11 月航拍)

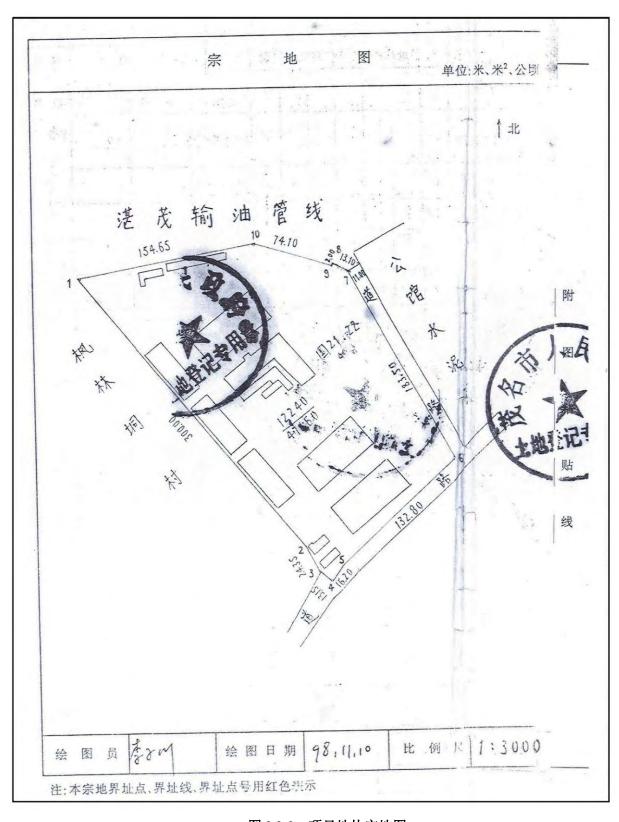



图 2.2-2 项目地块宗地图

表 2.2-1 企业地块拐点坐标表 (国家大地 2000 坐标系)

| 名称  | X坐标         | Y 坐标         |
|-----|-------------|--------------|
| J1  | 2399533.335 | 37481528.110 |
| J2  | 2399294.458 | 37481720.436 |
| J3  | 2399275.963 | 37481727.056 |
| J4  | 2399267.223 | 37481735.815 |
| J5  | 2399282.378 | 37481746.239 |
| J6  | 2399371.178 | 37481851.025 |
| J7  | 2399531.536 | 37481762.478 |
| J8  | 2399537.723 | 37481751.232 |
| Ј9  | 2399534.089 | 37481748.768 |
| J10 | 2399561.727 | 37481677.098 |

#### (3) 企业行业分类及经营情况

茂名天保再生资源发展有限公司位于茂名市茂南区公馆镇荔枝塘枫林垌268号大院,其前身为茂名市物资回收有限公司,茂名市物资回收有限公司于2009年底投资2020万元在茂南区公馆镇枫林垌村建设了废电子电器资源化处理及报废机动车辆回收拆解项目,项目分两期建设,其中一期建设回收拆解:废电视机及电脑20万台/年,废旧洗衣机8000台/年,废旧电冰箱8500台/年;二期建设回收拆除:废旧空调9500台/年,其他废旧家电10000台/年,废旧汽车2500辆/年,废旧摩托车及其他机动车10000辆/年。该项目己于2009年12月委托茂名市环境科学研究所编制了《茂名市物资回收有限公司废电子电器资源化处理及报废机动车辆回收拆解项目环境影响报告书》,原茂名市环境保护局于2009年12月16日对该《报告书》进行了审核批复。该项目一期工程己于2010年5月建成,并于2010年7月取得了原茂名市环境保护局的竣工验收批复《关于茂名市物资回收有限公司废电子电器资源化处理,及报废机动车辆回收拆解(-期)项目竣工环境保护验收意见的函》。

2010年,茂名市物资回收公司变更为茂名天保再生资源发展有限公司,并取得了原茂名市环境保护局的复函《关于<关于将茂名市物资回收有限公司废电子电器资源化及报废机动车辆回收拆解项目的建设单位变更为茂名天保再生资源发展有限公司的请示>的复函》。根据实际生产需要 2014年建设单位实际拆解能力有所调整,调整后拆解处理能力为电视机及电脑 19.9万台/年、冰箱 3万台/年、洗衣机 6万台/年、空调 1.1万台/年;变更后拆解能力得到了原茂名市环境保护局的批复确认《关于报送茂名天保再生资源发展有限公司废弃电器电子处理能力的报告》。

2015年10月茂名天保再生资源发展有限公司委托茂名市环境科学研究所编制了

《茂名天保再生资源发展有限公司报废机动车回收拆解项目环境影响报告书》,并于同年12月取得了《关于茂名天保再生资源发展有限公司报废机动车回收拆解项目环境影响报告书的批复》,批复的主要建设内容为:项目年回收和拆解汽车10000辆,摩托车(含农用三轮车)40000辆。2019年6月茂名天保再生资源发展有限公司对项目固体废物之外的其他环境要素进行了自主验收,编制了《茂名天保再生资源发展有限公司建设项目竣工环境保护验收监测报告》。2020年4月15日取得了茂名市生态环境局对固废环保设施的竣工验收批复《关于茂名天保再生资源发展有限公司报废机动车回收拆解项目固体废物污染防治设施竣工环境保护验收合格的函》。

2020年,茂名天保再生资源发展有限公司"四机一脑"总拆解能力不变,调整各种类的拆解能力,编制了《茂名天保再生资源发展有限公司废电子电器资源化及报废机动车辆回收拆解项目变动可行性论证报告》,变更后拆解能力为:年处理废旧电子产品总量为30万台/年(含年处理废电视及电脑12.5万台/年、废旧洗衣机2万台/年、废旧电冰箱11万台/年、废空调机4.5万台/年),变更申请《关于我公司废弃电器电子产品处理能力内部调整的请示》,并取得《关于同意茂名天保再生资源发展有限公司废弃电器电子产品处理能力内部调整的函》。

目前,茂名天保再生资源发展有限公司总生产规模为:废弃电器电子拆解能力为 200 万台/年(含年处理废电视机(含锥玻璃及液晶) 55 万台年,废电脑(含锥玻璃及液晶) 35 万台/年,废旧洗衣机 30 万台年,废旧电冰箱(含冰柜) 40 万台/年,废空调 40 万台/年);报废机动车拆解能力为 15 万辆/年(年回收和拆解汽车 9 万辆,摩托车(含农用三轮车) 6 万辆);年回收废铅蓄电池 20000 吨;年处理废小家电 35300 吨。

## 2.3 地块利用现状和历史

## 2.3.1 地块使用现状

地块现状为茂名天保再生资源发展有限公司厂区。地块较为平整,厂区大部分地面 由水泥层覆盖。踏勘期间,厂区处于正常生产状态,拆解设备及环保设施运行良好。

根据现场调查, 茂名天保再生资源发展有限公司从生产至今未发生过废水、废液、化学原料污染泄露的环境事故, 各废水、原料管道也未发生过因管道破损或管阀失灵而泄露的环境事故。



图 2.3-1 地块现状航拍图

## 2.3.2 地块历史沿革

根据收集到的相关资料,企业所在的地块利用历史如下:

茂名天保再生资源发展有限公司前身为茂名市物资回收有限公司,茂名市物资回收有限公司于2009年底投资2020万元在茂南区公馆镇枫林垌村建设了废电子电器资源化处理及报废机动车辆回收拆解项目。2010年,茂名市物资回收公司变更为茂名天保再生.资源发展有限公司。

根据历史卫星图显示(2014-2020 年)及企业调查获悉,2010年,茂名市物资回收公司变更为茂名天保再生资源发展有限公司。茂名天保再生资源发展有限公司于2010年5月建成后开始投产,主要为废旧家电拆解,同年7月完成环保验收工作。

2014年企业实际拆解能力有所调整,同年获得原茂名市环境保护局的批复确认。 2015年,因公司发展需要,茂名天保再生资源发展有限公司报废机动车回收拆解项目进行环评,同年12月得到环评批复。2016年—2017年,企业于西侧建设报废机动车回收拆解项目车间以及配套设施。2017年—2019年,企业开展废旧家电拆解和报废机动车拆解工作。2019年6月茂名天保再生资源发展有限公司对项目固体废物之外的其他环境要素进行了自主验收。2020年4月取得了茂名市生态环境局对固废环保设施的竣工验收 批复。

至今,废旧家电拆解和报废机动车拆解工作正常开展。2021年,茂名天保再生资源 发展有限公司对废旧电子产晶及报废机动车回收拆解技改扩能项目开展了环评工作,并于 2021年8月获得环评批复。同年10月完成竣工环境保护验收工作。期间,废旧家电拆解和报废机动车拆解工作正常开展。

根据历史卫星图,项目周边地块变化不大,调查范围内土地使用历史如下(详见地块历史图 2.3-2)。

表 2.3-1 地块发展历程表

| 时间          | 场地使用情况                                                                                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------|
| 2009 年以前    | 农林用地                                                                                                                   |
| 2009年       | 茂名市物资回收有限公司开始进行场地建设,同年进行环评并取得环评批<br>复                                                                                  |
| 2010年       | 茂名市物资回收有限公司更名为茂名天保再生资源发展有限公司                                                                                           |
| 2010年~2014年 | 茂名天保再生资源发展有限公司一期工程已于 2010 年 5 月建成开始投产,主要为废旧家电拆解,同年 7 月完成环保验收工作                                                         |
| 2014年       | 随着公司发展,2014 年企业实际拆解能力有所调整,同年获得原茂名市环境保护局的批复确认                                                                           |
| 2015 年      | 因公司发展需要,茂名天保再生资源发展有限公司报废机动车回收拆解项目于 2015 年进行环评,同年 12 月取得环评批复                                                            |
| 2016年~2017年 | 于地块西侧建设报废机动车回收拆解项目车间以及配套设施,废旧家电拆解工作正常开展                                                                                |
| 2017~2019 年 | 企业开展废旧家电拆解和报废机动车拆解工作                                                                                                   |
| 2019~2020 年 | 2019 年 6 月茂名天保再生资源发展有限公司对项目固体废物之外的其他<br>环境要素进行了自主验收。2020 年 4 月取得了茂名市生态环境局对固废<br>环保设施的竣工验收批复。废旧家电拆解和报废机动车拆解工作正常开展       |
| 2021 年~至今   | 2021 年,因公司发展需求,茂名天保再生资源发展有限公司对废旧电子产品及报废机动车回收拆解技改扩能项目开展了环评工作,并于2021 年8月获得环评批复。同年10月完成竣工环境保护验收工作。期间,废旧家电拆解和报废机动车拆解工作正常开展 |

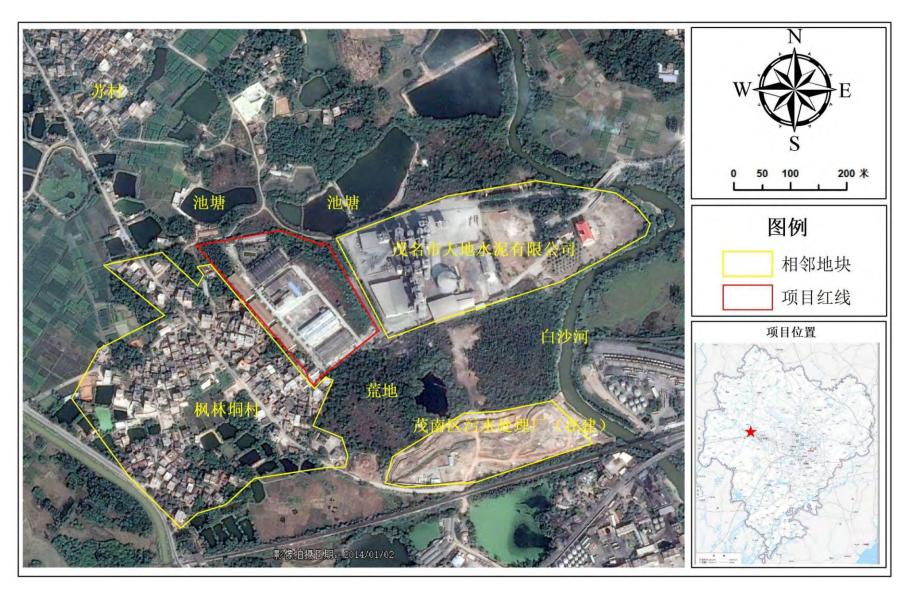



图 2.3-2-1 地块 2014年1月2日历史影像图

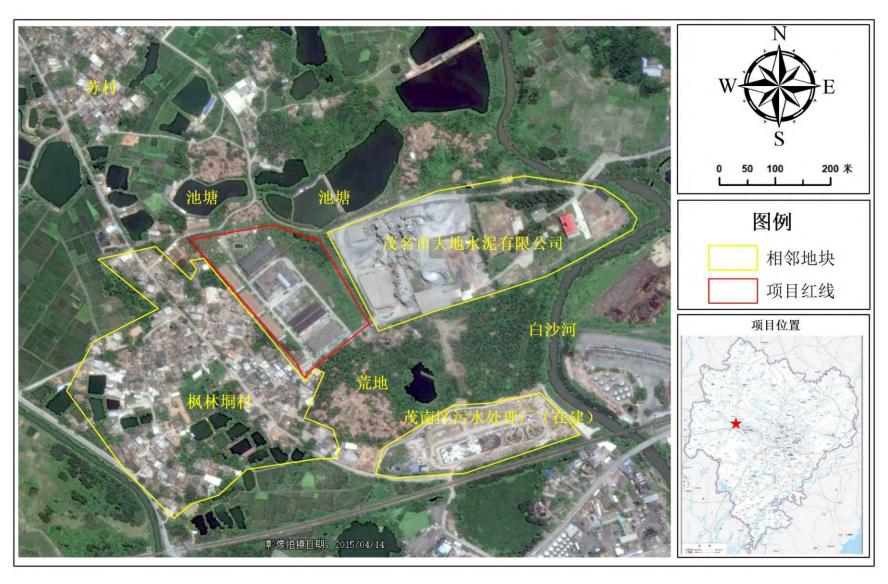



图 2.3-2-2 地块 2015 年 4 月 14 日历史影像图

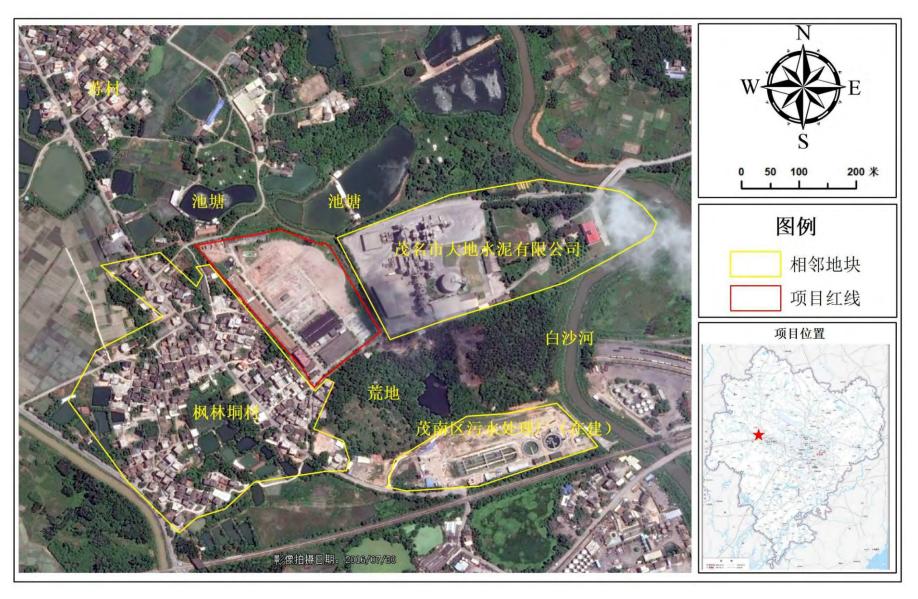



图 2.3-2-3 地块 2016 年 7 月 30 日历史影像图

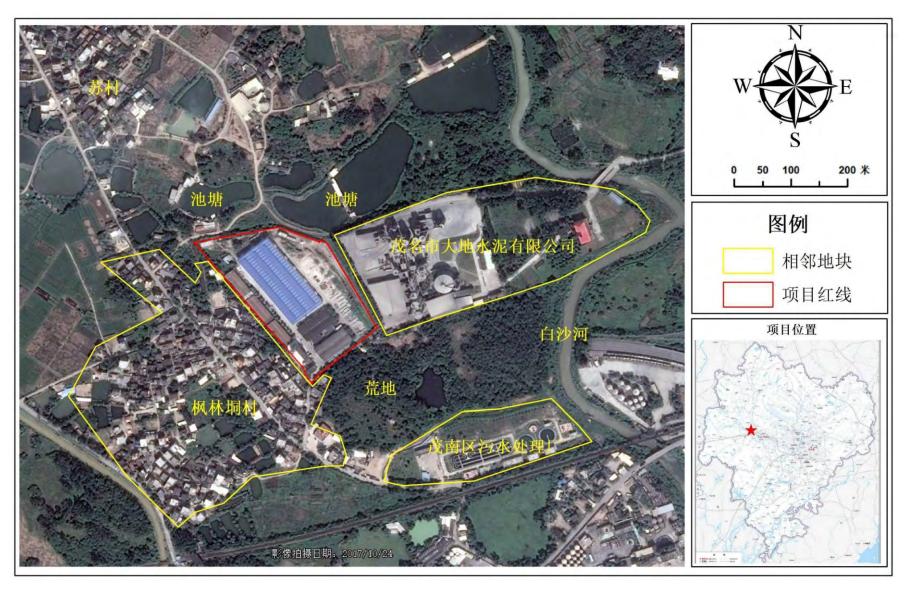



图 2.3-2-4 地块 2017 年 10 月 24 日历史影像图

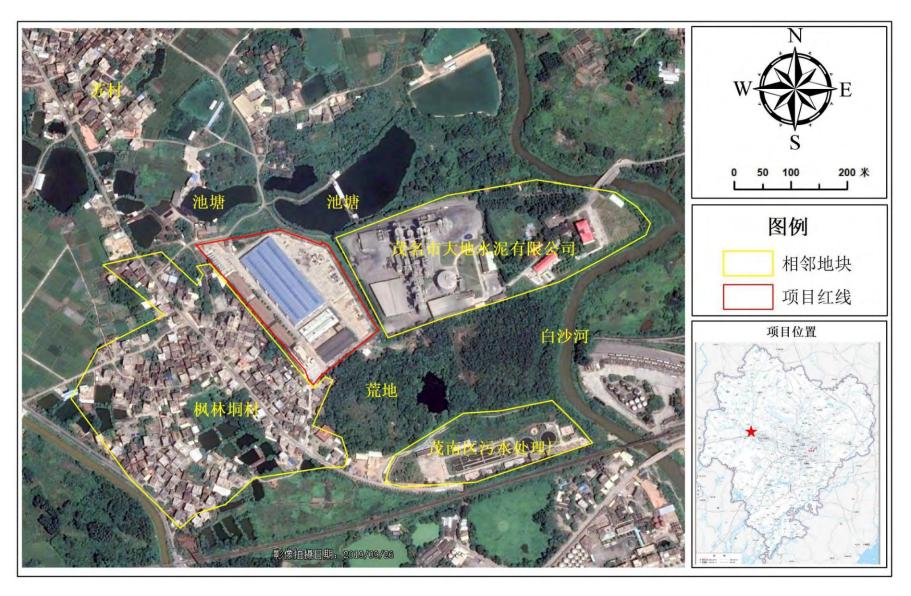



图 2.3-2-5 地块 2019 年 9 月 26 日历史影像图

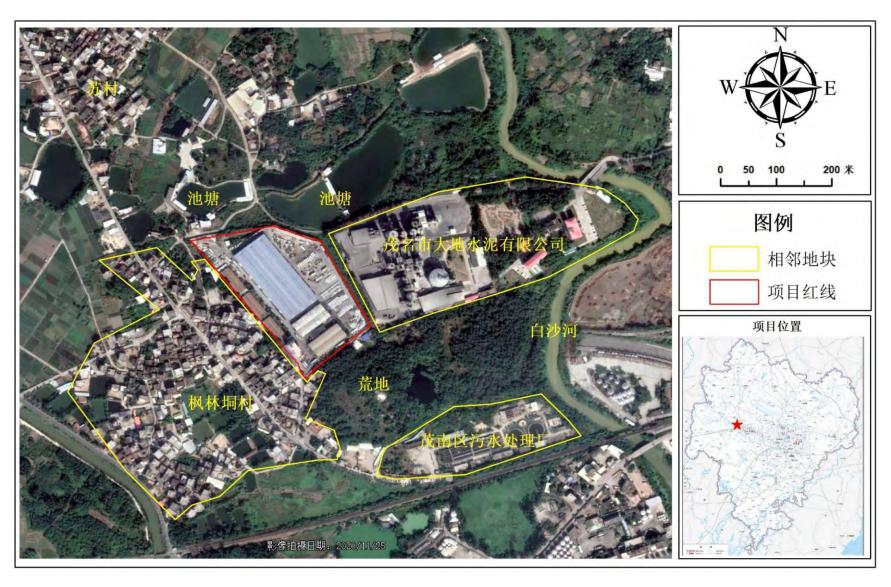



图 2.3-2-6 地块 2020 年 11 月 25 日历史影像图

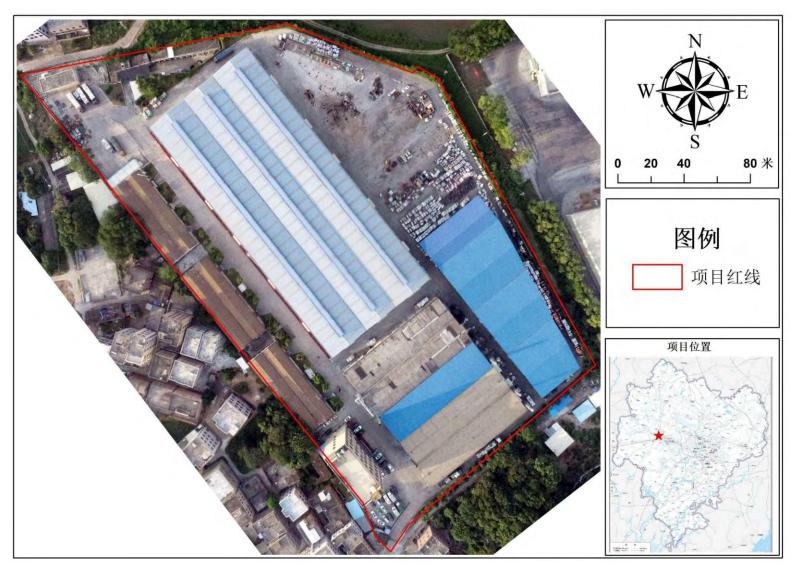



图 2.3-2-7 地块 2022 年 10 月航拍图

## 2.4 地块地质和水文地质条件

根据企业提供资料,茂名天保再生资源发展有限公司于 2015 年 7 月委托建 材广州地质工程勘察院对场地进行岩土工程勘察,并编制完成《茂名天保再生资 源发展有限公司报废机动车拆解项目岩土工程勘察报告》。通过其了解本地块的 地质情况以及地层结构情况。

同时,茂名天保再生资源发展有限公司于 2019 年完成《茂名天保再生资源 发展有限公司土壤和地下水自行监测调查报告》的钻探工作,其揭露情况可以辅助了解本地块的土层形状。

## 2.4.1 地质岩土层划分及描述

#### (1) 地块地质与地层结构

根据《茂名天保再生资源发展有限公司报废机动车拆解项目岩土工程勘察报告》钻探揭露,场地地层为填土层(Q<sup>ml</sup>)、冲洪积层(Q<sup>al+pl</sup>)、残积层(Q<sup>el</sup>)、白垩系泥岩(K)组成,自上而下分述如下:

#### ①填土层(Qml)

素填土(层序号 1): 褐黄色,松散,稍湿,主要为新近人工回填的粘性土,夹少量碎石,土质不均匀,遇水易湿陷。该层位于地表,本场地局部有分布,揭露厚度为 0.50~5.50m,平均 2.68m。进行标贯试验 4 次,其实测击数 N=6~8 击,平均 7.3 击;校正击数 N=5.8~7.8 击,平均 7.0 击。

#### ②冲洪积层(Qal+pl)

粉质粘土(层序号 2): 浅黄色,可塑,主要由粉粒和粘粒组成,稍有光泽,中等干强度,中等韧性。该层本场地局部有分布,揭露厚度 1.50~6.50m,平均 3.45m;层面埋深 1.00~1.00m,平均 1.00m。进行标贯试验 6 次,其实测击数 N=7~11 击,平均 8.7 击;校正击数 N=6.8~9.7 击,平均 8.3 击。

#### ③残积层(Qel)

粉质粘土(层序号 3): 紫褐色,硬塑,主要由粉粒和粘粒组成,为泥岩风化残留,遇水易软化。该层本场地除-一个孔外其他均有揭露,揭露厚度 5.60~11.30m,平均 8.85m;层面埋深 0.50~6.50m,平均 3.15m。进行标贯试验 43 次,其实测

击数 N=15~28 击, 平均 19.6 击; 校正击数 N=13.2~22.7 击, 平均 17.0 击。

#### ④白垩系泥岩(K)

强风化泥岩(层序号 4) : 紫褐色,岩石风化强烈,矿物成份显著变化,原岩结构清晰可辨,岩石风化裂隙发育,岩心呈半岩半土状,遇水易软化。该层本场地广泛分布,未揭穿,揭露厚度为 1.70~9.00m,平均 2.82m;层面埋深 3.80~11.50m,平均 10.36m。本层进行标贯试验 18 次,其实测击数 N=50~60 击,平均 53.9 击;校正击数 N=39.5~49.2 击,平均 42.5 击。

#### 岩土分界线

在工程角度上将岩土分层(层序号 1)~(层序号 3)层划分为土层,即在垂直方向上(层序号 4)强风化泥岩上界为岩土分界线。

#### (2) 地块土层形状

2019年,企业进行土壤和地下水自行监测期间,于场地内布设了6个土壤钻探孔。根据对其钻探岩心分析,钻探所揭露岩土层的分布状况列于表 2.4-1。

采样点 采样深度 m GPS 点位信息 土壤性状 颜色 湿度 质地 棕褐色 **T0S0** 0.25-0.5 潮 砂壤土 N21°41′17.40″ 棕褐色 砂壤土 E110°49′24.60″ 1.0-1.3 潮 5.6-6.0 棕褐色 湿 黏土 干 T1S1 0.25 - 0.5暗灰色 砂壤土 N21°41′25.28″ 棕褐色 潮 砂壤土 E110°49'23.34" 2.0 - 2.35.5-6.0 土红色 潮 轻壤土 潮 T2 0.3 - 0.5棕褐色 砂壤土 N21°41′25.17″ 3.5-4.0 褐色 潮 轻壤土 E110°49'19.12" 潮 轻壤土 5.0-5.2 棕色 T3S2 0.25-0.5 棕褐色 干 砂壤土 N21°41′24.03″ 轻壤土 E110°49′19.42″ 3.6-4.0 棕色 潮 6.0-6.3 褐色 潮 轻壤土 T4 0.25 - 0.5棕褐色 潮 砂壤土 N21°41′22.49″ 1.6-2.0 棕色 潮 砂壤土 E110°49'21.30" 棕褐色 潮 轻壤土 4.3-4.5 T5 0.25 - 0.5棕褐色 潮 砂壤土 N21°41′19.68″ 5.0-5.3 灰色 潮 轻壤土 E110°49′25.65″ 轻壤土 8.3-8.6 灰色 潮

表 2.4-1 地块土壤分布情况一览表

## 2.4.2 水文地质条件

根据《茂名天保再生资源发展有限公司报废机动车拆解项目岩土工程勘察报告》钻探揭露本地块的水文地质情况如下:

#### (1)地下水水位

勘察施工期间测得钻孔地下水水位埋深为 2.10~7.20m, 标高 12.46~17.45m, 地下水位年变化幅度约 0.50~ 1.50m。

#### (2)地下水类型

场地地下水主要由第四系土层中的松散岩类孔隙水和基岩裂隙水组成。

#### ①孔隙水

场区内地下水类型为上层潜水类型,主要赋存层位:素填土<1>层含孔隙毛细水,属上层滞水;冲、洪积<2>层粉质粘土为相对隔水层;残积<3>层粉质粘土层为相对隔水层,地下水富水性较贫乏,水力特点为无压或局部承压。

#### ②基岩裂隙水

该次勘察所揭露的基岩强风化泥岩裂隙主要为泥质充填,其透水性一般;下 覆中风化泥岩裂隙较发育(该次勘察未揭露到该层),透水性较强,表现为各向异 向性,呈脉状分布,含水量较贫乏~较丰富。

- (3)地下水动态:本场地地下水随气候呈现出季节性的变化。
- (4)地下水开发利用现状:本场地地下水未进行工业开发利用,也不涉及饮用与农业灌溉。
- (5)地下水径排条件:本场地地下水主要由大气降雨、河沟及附近生活用水渗透补给。

#### (6)地下水流向

结合《茂名天保再生资源发展有限公司 2022 奶奶土壤和地下水自行监测报告》相关内容,该次自行监测期间,在地块内新建 3 个监测井,结合原有 1 个监测井进行水位测量,其水位高程信息如表 2.4-2 所示。根据监测井水位高程,剔除上层滞水点位(W2),模拟的地下水流向图如图 2.4-1 所示,由流向图可知,地块内的地下水流向为自东偏南流向西偏北。。

表 2.4-2 地块内地下水监测井水位信息表

监测井编号 | 监测井经度 | 监测井纬度 | 监测井高程 | 监测井稳定 | 监测井稳定

|     |            |           | (m)   | 水位埋深 | 水位高程          |
|-----|------------|-----------|-------|------|---------------|
|     |            |           |       | (m)  | (m)           |
| W1  | 110.822066 | 21.690014 | 12.01 | 6.35 | 5.66          |
| W2  | 110.822373 | 21.690270 | 14.10 | 6.93 | 7.17 (含上层 滞水) |
| W3  | 110.823001 | 21.690428 | 14.01 | 8.23 | 5.78          |
| BJ1 | 110.824187 | 21.688643 | 14.00 | 6.54 | 7.46          |



图 2.4-1 地块地下水流向图

## 2.5 相邻地块的现状和历史

## 2.5.1 相邻地块使用现状

项目地块西侧为枫林垌村,东侧为茂名市大地水泥有限公司,企业西侧为枫 林垌村,北侧为池塘,东南侧隔着林地为茂南区污水处理厂。

①企业外北侧为三个水塘,水塘水质目视正常,水塘主要是周边村民用于散 养少量家鱼。

- ②企业外东侧是大地水泥厂,其主要功能为生产及销售水泥。公司占地面积 10万平方米,是由省核准建设的超百万吨级大型水泥生产企业,年产水泥 120 万吨。
  - ③企业外南侧主要是野生林地。
  - ④企业外西侧是枫林垌村。

企业周边水体流经水体主要是西侧的工业引水渠以及东侧的白沙河。西侧的工业引水渠距离企业约 370m,水渠中水体来源于鉴江。东侧的白沙河距离企业320m,河流中地表水体自北向南流动,最后汇入小东江。

其现状四至情况见表 2.5-1, 企业四至现状见图 2.5-1。

| 方位  | 现状用途        | 与调查地块距离 | 用地性质 |
|-----|-------------|---------|------|
| 西侧  | 枫林垌村        | 约 5m    | 居民区  |
| 北侧  | 池塘          | 紧邻      | 农用地  |
| 东侧  | 茂名市大地水泥有限公司 | 约 10m   | 工业用地 |
| 南侧  | 林地          | 紧邻      | 林地   |
| 东南侧 | 茂南区污水处理厂    | 约 250m  | 工业用地 |

表 2.5-1 企业四至现状情况表



图 2.5-1 企业四至现状图

# 2.5.2 相邻地块历史沿革

根据地块及周边 2014 年~2020 年的历史卫星影像图(见图 2.2-1)、结合现场踏勘等分析地块周边地块的历史沿革如下:

- (1) 地块东侧: 2014 年~2020 年均为茂名市大地水泥有限公司。
- (2) 地块南侧: 2014 年~2020 年东南侧隔着林地为茂南区污水处理厂。

- (3) 地块西侧: 历史至今均为枫林垌村。
- (4) 地块北侧: 2014 年~2020 年均为池塘。

相邻地块环境影响分析:

茂名市大地水泥有限公司紧邻本次调查地块的东侧,其主要功能为生产及销售水泥。公司占地面积 10 万平方米,是由省核准建设的超百万吨级大型水泥生产企业,年产水泥 120 万吨,总投资为 3500 万元,其中环保投资 300 万元。

公司生产线采用挤压联合粉磨工艺和磨内筛分技术,是全国采用"大辊压机 粉磨"新工艺的水泥厂家。水泥粉磨系统采用中央集散控制系统全自动操作,水 泥包装系统采用两台8嘴自动包装机和四条自动装车线。

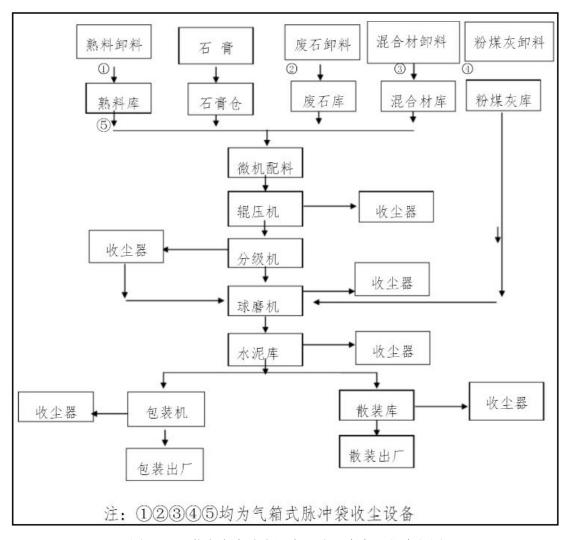



图 2.5-1 茂名市大地水泥有限公司生产工艺流程图

公司一期设计能力 60 万吨/年生产线已于 2010 年通过项目竣工环保验收; 二期于 2011 年 5 月开工, 2012 年 7 月投入试运行。茂名市环境保护监测站对该项目进行了现场监测,监测结果表明:

### 1) 废气

### (1)无组织排放废气

监测结果表明,废气污染物总悬浮颗粒物的排放浓度最高值范围为 0.376~0.449mg/m³ (排放监控标准为 1.0 mg/m³),符合《茂名市大气污染物排放限值》(DB44/57-2003)第二时段无组织排放监控浓度限值要求。主要为生产过程中,物料破碎、运输、粉磨和包装等生产过程中产生的粉尘。

### (2)有组织排放废气

监测结果表明,1#熟料提升机排气筒出口粉尘浓度范围为 10.2~11.6mg/m³,排放速率范围为 0.20~0.23kg/h; 2#熟料提升机排气筒出口粉尘浓度为 12.6~13.5 mg/m³,排放速率为 0.25~0.26kg/h; 3#熟料提升机排气筒出口粉尘浓度为 12.8~13.5mg/m³,排放速率为 0.25~0.27kg/h; 熟料传送带排气筒出口粉尘浓度为 12.6~13.1mg/m³,排放速率为 0.20~0.22kgh;滚压机排气筒出口粉尘浓度为 12.8~13.8mg/m³,排放速率为 0.20~0.22kgh;滚压机排气筒出口粉尘浓度为 12.8~13.8mg/m³,排放速率为 1.08~1.17kg/h;熟料磨排气筒出口粉尘浓度为 18.5~22 5mg/m³,排放速率为 0.22~0.26kg/h;1#包装机排气筒出口粉尘浓度为 5.8~6.3mg/m³,排放速率为 0.13~0.14kgh; 2#包装机排气筒出口粉尘浓度为 5.4~5.9mg/m³,排放速率为 0.12~0.13kg/h; 3#包装机排气筒出口粉尘浓度为 5.6~6.6mg/m³,排放速率为 0.17~0.20kg/h; 2#熟料磨排气筒出口粉尘浓度为 5.5~6.4mg/m³,排放速率为 0.16~0.19kg/h; 所有监测项目均符合广东省地方标准《茂名市大气污染物排放限值》(DB44/57-2003) 第二时段二级标准。

粉尘排放总量为 20.42 吨/年, "符合环评批复中污染物总量控制指标:粉尘 32.04 吨/年"的要求。

#### 2) 废水

冷却水收集循环使用,不外排;生活污水经收集处理后回用作绿化用水。

#### 3) 噪声

.厂界噪声昼间噪声监测值为 50.2~54.4dB (A), 夜间噪声监测值为 40.6~44.4dB(A),符合《工业企业厂界噪声标准》 (GB12348-90) I 类标准及《工业企业厂"界环境噪声排放标准》(GB12348-2008) 1 类标准限值要求。

#### 4) 固废

项目产生过程中产生固废物主要是废弃的水泥包装袋, 属普通工业固废, 年

产量约12吨,全部通过回收外卖。

经核实,该厂有较为完善的废水废气处理设施,对生产过程中的污染物产生 及排放有较为完善管理措施。该厂排污口及雨污管网未流经调查地块,且对于粉 尘的排放有较好的控制,因此初步判断该公司生产水泥对调查地块的影响较小。

### 2.6 敏感目标分布

环境敏感目标是指污染场地周围可能受污染物影响的居民区、学校、地表水体、农田等地点。项目周边 1km 范围内环境保护目标主要有居民区、村庄、学校及地表水体。项目周边 1km 范围内环境敏感目标见表 2.6-1, 主要环境敏感目标分布见图 2.6-1。

表 2.6-1 地块周边 1km 范围内环境敏感目标一览表

| 序<br>号 | 环境敏感目标名称  | 距地块方<br>位 | 距离(m) | 敏感因素类型 |
|--------|-----------|-----------|-------|--------|
| 1      | 红七岭村      | 西北        | 900   | 村庄居民点  |
| 2      | 池塘        | 西北        | 50    | 地表水体   |
| 3      | 农田        | 北         | 700   | 农田     |
| 4      | 苏村        | 西北        | 500   | 村庄居民点  |
| 5      | 池塘        | 西北        | 500   | 地表水体   |
| 6      | 大塘尾村      | 西北        | 800   | 村庄居民点  |
| 7      | 农田        | 西北        | 300   | 农田     |
| 8      | 池塘        | 西北        | 300   | 地表水    |
| 9      | 枫林垌村      | 西         | 5     | 村庄居民点  |
| 10     | 白沙河支流     | 西         | 400   | 地表水    |
| 11     | 农田        | 西南        | 700   | 农田     |
| 12     | 白沙河       | 东         | 400   | 地表水体   |
| 13     | 池塘        | 南         | 600   | 地表水体   |
| 14     | 茂南区第二实验学校 | 东南        | 900   | 学校     |

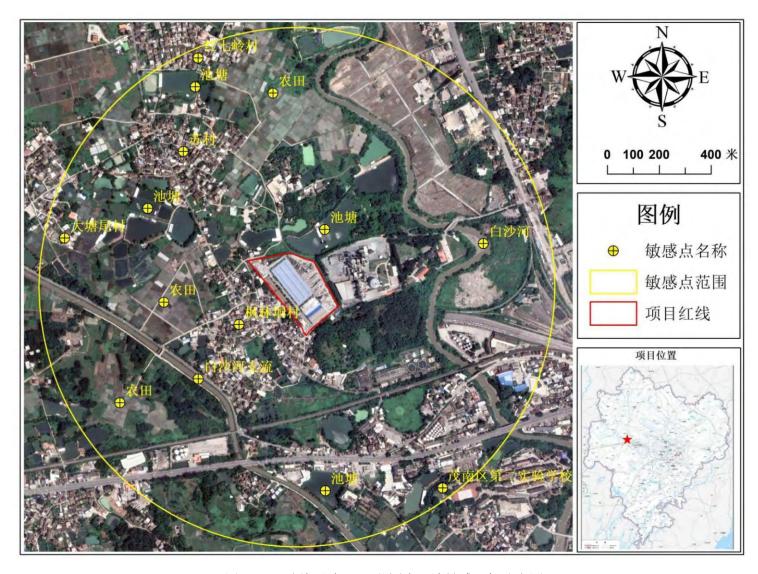



图 2.6-1 地块周边 1km 范围内环境敏感目标分布图

# 2.7 历史环境调查与监测结果

通过收集历史环境调查资料,茂名天保厂区内的土壤和地下水历史环境调查情况见表 2.7-1 所示。

表 2.7-1 历史土壤和地下水环境监测结果

| 资料来源                                                                                                              | 调查<br>时间               | 调查<br>要素 | 监测因子                                                                                                                                                                                                        | 调查结果        | 备注                                                     |
|-------------------------------------------------------------------------------------------------------------------|------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------|
| 《茂名天<br>保再生资<br>源发展有                                                                                              | 2019<br>年 11           | 土壤       | GB36600 表 1 基本 45 项+pH 值+含<br>水率+氟化物、铬、锌+石油烃<br>(C10-C40)                                                                                                                                                   | 超标□         | /                                                      |
| 限公司土<br>壤和地下<br>水自行监<br>测项目报<br>告》(2020<br>年6月)                                                                   | 月,<br>2020<br>年 5<br>月 | 地下水      | (1)GB36600-2018 表 1 中 44 个基本 项(不含氯甲烷);<br>(2)其他特征因子; 铬、锌、氟化物、 石油烃(C10-C40);<br>(3)其他基本水质因子: pH 值、硫酸 盐。                                                                                                      | 超标□<br>未超标☑ | /                                                      |
| 《茂名天保再生资                                                                                                          |                        | 土壤       | GB36600 表 1 基本 45 项+pH 值、水分+氟化物、铬、锑、锰、锌、锡、石油烃(C10-C40)、邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯                                                                                                                 | 超标□<br>未超标☑ | /                                                      |
| 保好工程<br>源公司<br>课公司<br>中<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市<br>市 | 2022<br>年 12<br>月      | 地下水      | GB/T14848-2017 中表 1 常规指标 35 项(微生物指标、放射性指标除外)+铬、锑、锰、镍、锌、锡、可萃取性石油烃(C10-C40)及多环芳烃 8 种(苯并(a)蒽、苯并(a)芘、苯并(b) 荧蒽、苯并(k)荧蒽、菌、二苯并(a,h) 蒽、茚并(1,2,3-c,d)芘)、氯仿、四氯化碳、苯、甲苯、乙苯、二甲苯、苯乙烯、邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯 | 超标☑<br>未超标□ | 部分点位的<br>锰、氨氮、耗<br>氧量超过《地<br>下水环境质<br>量标准》III<br>类标准限值 |

### 2.7.1 2019 年土壤及地下水自行监测

深圳市政院检测有限公司茂名分公司委托中证检测于 2019 年 11 月 05~13 日开展现场采样工作,共采集 6 个深层土孔样品,并建设 4 口地下水监测井,完成 4 个地下水样品的采集,于 2019 年 12 月 11 日完成监测。同时,于 2020年 5 月 18 日中证检测二次进场补充采集了 1 个土壤表层点位以及利用原有的 4 个地下水监测井增加了 10 个地下水有机物指标的采样。最终,深圳市政院检测有限公司茂名分公司整合两次监测数据,于 2020年 6 月编制完成《茂名天保再生资源发展有限公司土壤和地下水自行监测调查报告》。

此次监测涉及两次进场,总共涉及7个土壤点位,其中6个为深层点位,1个为表层点位。共建设4个地下水监测井。两次土壤与地下水监测的布点图见图 2.7-1。

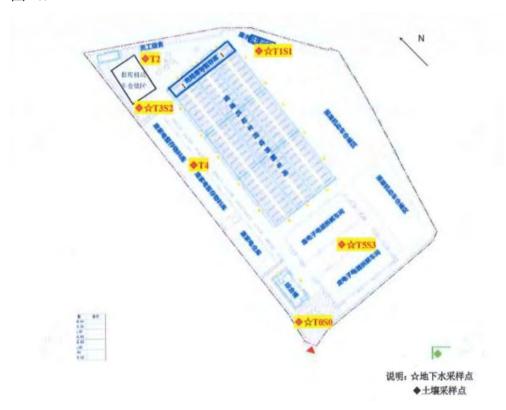
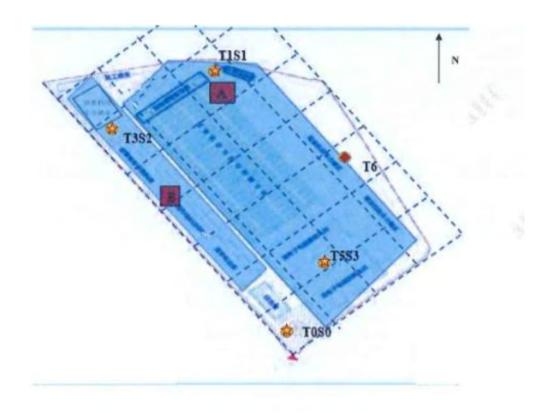




图 2.7-1 2019 年企业土壤和地下水监测布点示意图 (2019.11 第一次进场监测)



说明: ☆地下水采样点 ◆土壤采样点

图 2.7-1 2019 年企业土壤和地下水监测布点示意图(2020.5 第二次进场监测) 2019 年度土壤自行监测结果统计见下表:

表 2.7-2 土壤监测结果统计表

|               | 结果(mg/kg)                 |                       |                        |                        |                       |                       |             |  |  |
|---------------|---------------------------|-----------------------|------------------------|------------------------|-----------------------|-----------------------|-------------|--|--|
| AA SHAWE FI   | 采样                        | 日期: 2019              | 9.11.06                | 采样                     | 日期: 2019.             | 11.05                 | On State of |  |  |
| 检测项目          | TOSO                      |                       |                        |                        | TISI                  |                       | 执行标准        |  |  |
|               | 0.2~0.5m                  | 1.0~1.3m              | 5.6~6.0m               | 0.25~0.5m              | 2.0~2.3m              | 5.5~6.0m              |             |  |  |
| pH            | 6.79                      | 6.83                  | 6.77                   | 3.34                   | 7.94                  | 4.87                  |             |  |  |
| 含水率           | 53.0                      | 43.3                  | 54.3                   | 17.7                   | 21.1                  | 37.3                  |             |  |  |
| 氯化物           | <125                      | <125                  | <125                   | 154                    | <125                  | <125                  | -           |  |  |
|               |                           |                       | 重金                     | <b>全属</b>              |                       |                       |             |  |  |
| 砷             | 7.02                      | 4.51                  | 4.13                   | 12.6                   | 4.76                  | 1.58                  | 60          |  |  |
| 镉             | 0.05                      | 0.02                  | 0.07                   | 0.08                   | 8.75                  | 0.02                  | 65          |  |  |
| 六价铬           | <2                        | <2                    | 2                      | <2                     | <2                    | <2                    | 5.7         |  |  |
| 铜             | 10                        | 4                     | 13                     | 22                     | 20                    | 5                     | 18000       |  |  |
| 铅             | 66.4                      | 32.2                  | 60.0                   | 40.4                   | 740                   | 58.4                  | 800         |  |  |
| 汞             | 0.108                     | 0.020                 | 0.031                  | 0.098                  | 0.064                 | 0.190                 | 38          |  |  |
| 镍             | 10                        | 23                    | 223                    | 14                     | 10                    | 10                    | 900         |  |  |
| 铬             | 6                         | 8                     | 13                     | 54                     | 39                    | 10                    |             |  |  |
| 锌             | 70                        | 70                    | 116                    | 47                     | 117                   | 55                    | -           |  |  |
|               |                           |                       | 半挥发性                   | 生有机物                   |                       |                       |             |  |  |
| 硝基苯           | <0.09                     | <0.09                 | < 0.09                 | < 0.09                 | <0.09                 | < 0.09                | 76          |  |  |
| 苯胺            | <0.01                     | <0.01                 | <0.01                  | < 0.01                 | <0.01                 | <0.01                 | 260         |  |  |
| 2-氯酚          | < 0.06                    | <0.06                 | < 0.06                 | <0.06                  | ⊲0.06                 | < 0.06                | 2256        |  |  |
| 苯并[a] 蔥       | <0.10                     | <0.10                 | < 0.10                 | < 0.10                 | <0.10                 | <0.10                 | 15          |  |  |
| 苯并[a] 芘       | <0.10                     | <0.10                 | <0.10                  | <0.10                  | <0.10                 | < 0.10                | 1.5         |  |  |
| 苯并 [b] 荧蒽     | <0.20                     | <0.20                 | <0.20                  | < 0.20                 | <0.20                 | < 0.20                | 15          |  |  |
| 苯并 [k] 荧蒽     | <0.10                     | ⊲0.10                 | <0.10                  | <0.10                  | <0.10                 | <0.10                 | 151         |  |  |
| 蔥             | <0.10                     | <0.10                 | < 0.10                 | <0.10                  | <0.10                 | <0.10                 | 1293        |  |  |
| 二苯并 [a,h] 蒽   | < 0.10                    | <0.10                 | <0.10                  | < 0.10                 | <0.10                 | <0.10                 | 1.5         |  |  |
| 茚并[1,2,3-cd]芘 | <0.10                     | <0.10                 | <0.10                  | <0.10                  | <0.10                 | < 0.10                | 15          |  |  |
| 萘             | < 0.09                    | <0.09                 | <0.09                  | < 0.09                 | <0.09                 | <0.09                 | 70          |  |  |
|               |                           |                       | 石油                     | 烃类                     |                       |                       |             |  |  |
| 石油烃           | 91                        | 51                    | 52                     | 57                     | 83                    | 36                    | 4500        |  |  |
|               |                           |                       | 挥发性                    | 有机物                    |                       |                       | 1111        |  |  |
| 四氯化碳          | <1.3x10 <sup>-3</sup>     | $<1.3 \times 10^{-3}$ | <1.3x10 <sup>-3</sup>  | <1.3x10 <sup>-3</sup>  | <1.3x10-3             | <1.3x10-3             | 2.8         |  |  |
| 氯仿            | $< 1.1 \times 10^{-3}$    | <1.1x10-3             | <1.1x10 <sup>-3</sup>  | $< 1.1 \times 10^{-3}$ | <1.1x10-3             | $< l.lx10^{-3}$       | 0.9         |  |  |
| 氯甲烷           | <1.0x10 <sup>-3</sup>     | $<1.0x10^{-3}$        | $<1.0x10^{-3}$         | <1.0x10 <sup>-3</sup>  | <1.0x10 <sup>-3</sup> | $<1.0x10^{-3}$        | 37          |  |  |
| 1,1-二氯乙烷      | $<1.2x10^{-3}$            | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>  | <1.2x10-3             | <1.2x10 <sup>-3</sup> | 9           |  |  |
| 1,2-二氯乙烷      | <1.3x10 <sup>-3</sup>     | $<1.3x10^{-3}$        | <1.3x10 <sup>-3</sup>  | <1.3x10 <sup>-3</sup>  | <1.3x10 <sup>-3</sup> | <1.3x10-3             | 5           |  |  |
| 1,1-二氯乙烯      | $<1.0x10^{-3}$            | $<1.0x10^{-3}$        | <1.0x10 <sup>-3</sup>  | <1.0x10 <sup>-3</sup>  | <1.0x10 <sup>-3</sup> | $<1.0x10^{-3}$        | 66          |  |  |
| 順-1,2-二氯乙烯    | $<1.3x10^{-3}$            | $<1.3x10^{-3}$        | <1.3x10 <sup>-3</sup>  | <1.3x10-3              | <1.3x10-3             | <1.3x10 <sup>-3</sup> | 596         |  |  |
| 反-1,2-二氯乙烯    | $<1.4x10^{-3}$            | $<1.4x10^{-3}$        | <1.4x10 <sup>-3</sup>  | <1.4x10-3              | <1.4x10-3             | $<1.4x10^{-3}$        | 54          |  |  |
| 二氯甲烷          | $<1.5 \times 10^{-3}$     | <1.5x10 <sup>-3</sup> | <1.5x10-3              | <1.5x10 <sup>-3</sup>  | <1.5x10-3             | <1.5x10-3             | 616         |  |  |
| 1,2-二氯丙烷      | $\leq 1.1 \times 10^{-3}$ | $<1.1x10^{-3}$        | <1.1x10 <sup>-3</sup>  | <1.1x10 <sup>-3</sup>  | <1.1x10 <sup>-3</sup> | $<1.1x10^{-3}$        | - 5         |  |  |
| 1,1,1,2-四氯乙烷  | $<1.2x10^{-3}$            | <1.2x10 <sup>-3</sup> | $< 1.2 \times 10^{-3}$ | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 10          |  |  |
| 1,1,2,2-四氯乙烷  | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | $< 1.2 \times 10^{-3}$ | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 6.8         |  |  |
| 四氯乙烯          | $<1.4x10^{-3}$            | <1.4x10 <sup>-3</sup> | <1.4x10 <sup>-3</sup>  | <1.4x10 <sup>-3</sup>  | <1.4x10 <sup>-3</sup> | $<1.4x10^{-3}$        | 53          |  |  |
| 1,1,1-三氯乙烷    | <1.3x10 <sup>-3</sup>     | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup>  | <1.3x10-3              | <1.3x10-3             | <1.3x10-3             | 840         |  |  |
| 1,1,2-三氯乙烷    | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 2.8         |  |  |

| 三氟乙烯       | <                     | <1.2x10 <sup>-3</sup> | 2.8  |
|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------|
| 1,2,3-三氯丙烷 | <                     | <1.2x10 <sup>-3</sup> | 0.5  |
| 氯乙烯        | <                     | $<1.0x10^{-3}$        | <1.0x10 <sup>-3</sup> | <1.0x10 <sup>-3</sup> | $<1.0x10^{-3}$        | <1.0x10 <sup>-3</sup> | 0.43 |
| 苯          | < .                   | <1.9x10 <sup>-3</sup> | <1.9x10 <sup>-3</sup> | <1.9x10 <sup>-3</sup> | $<1.9x10^{-3}$        | $<1.9x10^{-3}$        | 4    |
| 氯苯         | <                     | <1.2x10 <sup>-3</sup> | 270  |
| 1,2-二氯苯    | C1.5X10-3             | $<1.5x10^{-3}$        | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | 560  |
| 1.4-二氯苯    | $<1.5x10^{-3}$        | <1.5x10-3             | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10-3             | 20   |
| 乙苯         | <1.2x10 <sup>-3</sup> | 28   |
| 苯乙烯        | $<1.1x10^3$           | $<1.1x10^{-3}$        | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | 1290 |
| 甲苯         | $<1.3x10^3$           | <1.3x10 <sup>-3</sup> | 1200 |
| 间,对-二甲苯    | $<1.2x10^3$           | <1.2x10 <sup>-3</sup> | 570  |
| 邻二甲苯       | <1.2x10-3             | <1.2x10-3             | <1.2x10-3             | <1.2x10-3             | <1.2x10-3             | <1.2x10-3             | 640  |

|               |                       |                | 结果(                   | mg/kg)                | 74.                   |                        |       |
|---------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|------------------------|-------|
| ACOMM FI      |                       |                | 采样日期:                 | 2019.11.05            |                       | 0.571-96               |       |
| 检测项目          |                       | T2             |                       |                       | T3S2                  |                        | 执行标准  |
|               | 0.3∽0.5m              | 3.5~4.0m       | 5.0∽5.2m              | 0.25~0.5m             | 3.6~4.0m              | 6.0∽6.3m               |       |
| pН            | 8.63                  | 5.23           | 5.40                  | 4.88                  | 5.36                  | 5.20                   |       |
| 含水率           | 32.6                  | 34.0           | 46.7                  | 27.2                  | 36.2                  | 42.8                   | 100   |
| 氟化物           | <125                  | <125           | <125                  | <125                  | 193                   | <125                   |       |
|               |                       |                | 重金                    | 属                     |                       |                        |       |
| 神             | 5.54                  | 2.33           | 1.87                  | 3.17                  | 1.54                  | 2.44                   | 60    |
| 镉             | 0.34                  | 0.02           | 0.01                  | 0.02                  | 0.02                  | 0.03                   | 65    |
| 六价铬           | <2                    | <2             | <2                    | <2                    | <2                    | <2                     | 5.7   |
| 铜             | 8                     | 3              | 3                     | 7                     | 5                     | 5                      | 18000 |
| 铅             | 57.0                  | 41.2           | 35.4                  | 13.9                  | 50.7                  | 47.5                   | 800   |
| 汞             | 0.060                 | 0.104          | 0.032                 | 0.019                 | 0.025                 | 0.041                  | 38    |
| 镍             | 5.                    | 7              | 6                     | 5                     | 7                     | 7                      | 900   |
| 格             | 15                    | 9              | 10                    | 9                     | 7                     | 8                      |       |
| 锌             | 65                    | 58             | 57                    | 65                    | 64                    | 85                     |       |
|               |                       |                | <b></b>               | 有机物                   |                       |                        |       |
| 硝基苯           | ⊲0.09                 | <0.09          | <0.09                 | <0.09                 | < 0.09                | ⊲0.09                  | 76    |
| 苯胺            | ⊲0.01                 | ⊲0.01          | <0.01                 | <0.01                 | < 0.01                | ⊲0.01                  | 260   |
| 2-氯酚          | <0.06                 | <0.06          | < 0.06                | <0.06                 | < 0.06                | <0.06                  | 2256  |
| 苯并 [a] 蔥      | <0.11                 | < 0.10         | < 0.10                | <0.10                 | < 0.10                | <0.10                  | 15    |
| 苯并 [a] 芘      | <0.10                 | <0.10          | <0.10                 | <0.10                 | < 0.10                | <0.10                  | 1.5   |
| 業并 [b] 荧蒽     | <0.20                 | <0.20          | <0.20                 | <0.20                 | < 0.20                | <0.20                  | 15    |
| 举并 [k] 荧蒽     | <0.10                 | ≈0.10          | < 0.10                | <0.10                 | < 0.10                | < 0.10                 | 151   |
| 蔥             | <0.11                 | < 0.10         | <0.10                 | <0.10                 | < 0.10                | < 0.10                 | 1293  |
| 苯并 [a,h] 蒽    | ⊲0.10                 | <0.10          | <0.10                 | <0.10                 | < 0.10                | <0.10                  | 1.5   |
| 茚并[1,2,3-cd]花 | <0.10                 | <0.10          | <0.10                 | <0.10                 | <0.10                 | <0.10                  | 15    |
| 兼             | <0.09                 | < 0.09         | < 0.09                | <0.09                 | < 0.09                | ⊲0.09                  | 70    |
|               |                       |                | 石油                    | <b>经类</b>             |                       |                        |       |
| 石油烃           | 102                   | 44             | 31                    | 72                    | 20                    | 22                     | 4500  |
|               |                       |                | 挥发性                   | 有机物                   |                       |                        |       |
| 四氯化碳          | $<1.3x10^{-3}$        | $<1.3x10^3$    | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup>  | 2.8   |
| 氯仿            | $<1.1x10^{-3}$        | $<1.1x10^{-3}$ | <1.1x10 <sup>-3</sup> | $<1.1x10^{-3}$        | $<1.1x10^{-3}$        | $< 1.1 \times 10^{-3}$ | 0.9   |
| 氯甲烷           | <1.0x10 <sup>-3</sup> | $<1.0x10^{-3}$ | <1.0x10 <sup>-3</sup> | <1.0x10 <sup>-3</sup> | <1.0x10 <sup>-3</sup> | <1.0x10 <sup>-3</sup>  | 37    |

| 1,1-二氟乙烷     | < 1.2X10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 9    |
|--------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------|
| 1,2-二氟乙烷     | $<1.3\times10^{-3}$    | <1.3x10.3             | <1.3x10 <sup>-3</sup> | $<1.3x10^{-3}$        | <1.3x10-3             | <1.3x10 <sup>-3</sup> | 5    |
| 1,1-二氯乙烯     | $\leq 1.0 X 10^{-3}$   | $<1.0x10^{-3}$        | $<1.0x10^{-3}$        | $<1.0x10^{-3}$        | <1.0x10 <sup>-3</sup> | $<1.0x10^{-3}$        | 66   |
| 順-1,2-二氯乙烯   | $<1.3x10^{-3}$         | $<1.3x10^{-3}$        | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | 596  |
| 反-1,2-二氯乙烯   | $<1.4x10^{-3}$         | $<1.4x10^{-3}$        | <1.4x10 <sup>-3</sup> | $<1.4x10^{-3}$        | $<1.4x10^{-3}$        | <1.4x10 <sup>-3</sup> | 54   |
| 二氯甲烷         | <1.5x10-3              | <1.5x10-3             | <1.5x10-3             | <1.5x10-1             | <1.5x10-3             | <1.5x10-3             | 616  |
| 1,2-二氯丙烷     | <1.1x10 <sup>-3</sup>  | <1.1x10 <sup>-3</sup> | <1.1x10-3             | <1.1x10-3             | <1.1x10-3             | <1.1x10 <sup>-3</sup> | .5   |
| 1,1,1,2-四氯乙烷 | < 1.2X10 <sup>-3</sup> | <1.2x10-3             | <1.2x10-3             | <1.2x10-3             | <1.2x10-3             | <1.2x10 <sup>-3</sup> | 10   |
| 1,1,2,2-四氯乙烷 | < 1.2X10-3             | <1.2x10 <sup>-3</sup> | 6.8  |
| 四氯乙烯         | < 1.4X10 <sup>-3</sup> | <1.4x10 <sup>-3</sup> | <1.4x10 <sup>-3</sup> | $<1.4x10^{-3}$        | <1.4x10 <sup>-3</sup> | <1.4x10 <sup>-3</sup> | 53   |
| 1,1,1-三氯乙烷   | $<1.3x10^{-3}$         | <1.3x10 <sup>-3</sup> | $<1.3x10^{-3}$        | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | 840  |
| 1,1,2-三氯乙烷   | $\leq 1.2 X 10^{-3}$   | <1.2x10 <sup>-3</sup> | 2.8  |
| 三氯乙烯         | < 1.2X10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | $<1.2x10^{-3}$        | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 2.8  |
| 1,2,3-三氯丙烷   | $< 1.2 X 10^{-3}$      | <1.2x10 <sup>-3</sup> | $<1.2x10^{-3}$        | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 0.5  |
| 氯乙烯          | < 1.0X10 <sup>-3</sup> | <1.0x10 <sup>-3</sup> | <1.0x10 <sup>-3</sup> | <1.0x10-3             | <1.0x10-3             | <1.0x10 <sup>-3</sup> | 0.43 |
| 苯            | $< 1.9 X 10^{-3}$      | <1.9x10 <sup>-3</sup> | <1.9x10 <sup>-3</sup> | <1.9x10-3             | <1.9x10-3             | <1.9x10-3             | 4    |
| 氯苯           | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10-3             | 270  |
| 1,2-二振苯      | $<1.5x10^{-3}$         | $<1.5x10^{-3}$        | <1.5x10 <sup>-3</sup> | <1.5x10-3             | <1.5x10-3             | <1.5x10 <sup>-3</sup> | 560  |
| 1,4-二氯苯      | <1.5x10 <sup>-3</sup>  | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | 20   |
| 乙苯           | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 28   |
| 苯乙烯          | <1.1x10 <sup>-3</sup>  | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | 1290 |
| 甲苯           | $<1.3x10^{-3}$         | <1.3x10 <sup>-3</sup> | 1200 |
| 间,对-二甲苯      | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 570  |
| 邻二甲苯         | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 640  |

|           | 结果 (mg/kg) |                  |          |           |          |          |       |  |  |
|-----------|------------|------------------|----------|-----------|----------|----------|-------|--|--|
| 1A SHAWER |            | 采样日期: 2019.11.05 |          |           |          |          |       |  |  |
| 检测项目      |            | T4               |          |           | T5S3     |          | 执行标准  |  |  |
|           | 0.2~0.5m   | 1.6~2.0m         | 4.3~4.5m | 0.25∽0.5m | 5.0~5.3m | 8.3~8.6m |       |  |  |
| pH        | 7.15       | 4.34             | 4.71     | 6.98      | 5.33     | 4.45     |       |  |  |
| 含水率       | 34.4       | 56.6             | 56.5     | 21.0      | 49.0     | 47.1     | -     |  |  |
| 氟化物       | <125       | <125             | <125     | 173       | <125     | <125     | -     |  |  |
|           |            |                  | 重        | 金属        |          |          |       |  |  |
| 砷         | 3.90       | 1.86             | 1.96     | 7.20      | 2.38     | 2.99     | 60    |  |  |
| 镉         | 0.05       | 0.02             | 0.03     | 0.18      | 0.02     | 0.01     | 65    |  |  |
| 六价铬       | <2         | <2               | <2       | <2        | V        | <2       | 5.7   |  |  |
| 铜         | 8          | 7                | 5        | 42        | 8        | 2        | 18000 |  |  |
| 铅         | 63.8       | 126              | 64.8     | 87.0      | 54.3     | 34.2     | 800   |  |  |
| 汞         | 0.447      | 0.009            | 0.016    | 0.048     | 0.020    | 0.009    | 38    |  |  |
| 镍         | 10         | 10               | 10       | 10        | 9        | 10       | 900   |  |  |
| 铬         | 6          | 7                | 7        | 22        | 7        | 7        | - 22  |  |  |
| 锌         | 55         | 56               | 56       | 58        | 75       | 63       | -     |  |  |
|           |            |                  | 半挥发      | 性有机物      |          |          |       |  |  |
| 硝基苯       | < 0.09     | < 0.09           | < 0.09   | <0.09     | < 0.09   | < 0.09   | 76    |  |  |
| 苯胺        | <0.01      | <0.01            | <0.01    | <0.01     | <0.01    | <0.01    | 260   |  |  |
| 2-氯酚      | <0.06      | <0.06            | <0.06    | < 0.06    | <0.06    | < 0.06   | 2256  |  |  |
| 苯并 [a] 蔥  | <0.10      | <0.10            | <0.10    | <0.10     | <0.10    | <0.10    | 15    |  |  |
| 苯并 [a] 芘  | <0.10      | <0.10            | < 0.10   | <0.10     | <0.10    | <0.10    | 1.5   |  |  |

| #并[b] 荧蔥          | <0.20                  | <0.20                     | < 0.20                    | < 0.20                | <0.20                 | <0.20                 | 15   |
|-------------------|------------------------|---------------------------|---------------------------|-----------------------|-----------------------|-----------------------|------|
| 苯并 [k] 荧蒽         | < 0.10                 | <0.10                     | <0.10                     | < 0.10                | <0.10                 | <0.10                 | 151  |
| 恵                 | <0.10                  | <0.10                     | < 0.10                    | <0.10                 | < 0.10                | <0.10                 | 1293 |
| 二苯并 [a,h] 蒽       | <0.10                  | <0.10                     | <0.10                     | <0.10                 | <0.10                 | <0.10                 | 1.5  |
| 带并[1,2,3-cd]芘     | <0.10                  | <0.10                     | < 0.10                    | < 0.10                | < 0.10                | <0.10                 | 15   |
| 萘                 | <0.09                  | <0.09                     | <0.09                     | < 0.09                | < 0.09                | <0.09                 | 70   |
|                   |                        |                           | 石油                        | 烃类                    |                       |                       |      |
| 石油烃               | 35                     | 42                        | 39                        | 55                    | 42                    | 34                    | 4500 |
|                   |                        |                           | 挥发性                       | 有机物                   |                       |                       |      |
| 四氯化碳              | <1.3x10-3              | <1.3x10 <sup>-3</sup>     | <1.3x10 <sup>-3</sup>     | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | 2.8  |
| 氯仿                | <1.1x10 <sup>-3</sup>  | $\leq 1.1 \times 10^{-3}$ | $\leq 1.1 \times 10^{-3}$ | <1.1x10-3             | <1.1x10 <sup>-3</sup> | <1.1x10-3             | 0.9  |
| 氯甲烷               | $<1.0x10^{-3}$         | $<1.0x10^{-3}$            | <1.0x10-3                 | <1.0x10-3             | <1.0x10 <sup>-3</sup> | <1.0x10-3             | 37   |
| 1,1-二氯乙烷          | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>     | <1.2x10-3                 | <1.2x10-3             | <1.2x10 <sup>-3</sup> | <1.2x10-3             | 9    |
| 1,2-二氯乙烷          | $<1.3x10^{-3}$         | <1.3x10-3                 | <1.3x10-3                 | <1.3x10-3             | <1.3x10-3             | <1.3x10-3             | 5    |
| 1,1-二氯乙烯          | $<1.0x10^{-3}$         | $<1.0x10^{-3}$            | $<1.0x10^{-3}$            | $<1.0x10^{-3}$        | <1.0x10 <sup>-3</sup> | <1.0x10-3             | 66   |
| <b>帜-1,2-二氯乙烯</b> | $<1.3x10^{-3}$         | <1.3x10 <sup>-3</sup>     | $<1.3x10^{-3}$            | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10-3             | 596  |
| 反-1,2-二氯乙烯        | $<1.4x10^{-3}$         | <1.4x10 <sup>-3</sup>     | <1.4x10 <sup>-3</sup>     | $<1.4x10^{-3}$        | <1.4x10 <sup>-3</sup> | <1.4x10 <sup>-3</sup> | 54   |
| 二氯甲烷              | <1.5x10 <sup>-3</sup>  | <1.5x10 <sup>-3</sup>     | <1.5x10 <sup>-3</sup>     | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | 616  |
| 1,2-二氯丙烷          | $< 1.1 \times 10^{-3}$ | $<1.1x10^{-3}$            | <1.1x10 <sup>-3</sup>     | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | 5    |
| 1,1,1,2-四氯乙烷      | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 10   |
| 1,1,2,2-四氯乙烷      | <1.2x10-3              | <1.2x10-3                 | <1.2x10-3                 | <1.2x10-3             | <1.2x10 <sup>-3</sup> | <1.2x10-3             | 6.8  |
| 四氯烷乙烯             | <1.4x10 <sup>-3</sup>  | $<1.4x10^{-3}$            | <1.4x10-3                 | <1.4x10-3             | <1.4x10 <sup>-3</sup> | <1.4x10-3             | 53   |
| 1,1,1-三氟乙烷        | $<1.3x10^{-3}$         | <1.3x10-3                 | <1.3x10-3                 | <1.3x10-3             | <1.3x10-3             | <1.3x10-3             | 840  |
| 1,1,2-三氯乙烷        | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 2.8  |
| 三氯乙烯              | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 2.8  |
| 1,2,3-三氯丙烷        | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 0.5  |
| 氯乙烯               | <1.0x10 <sup>-3</sup>  | <1.0x10 <sup>-3</sup>     | <1.0x10 <sup>-3</sup>     | $<1.0x10^{-3}$        | <1.0x10 <sup>-3</sup> | <1.0x10 <sup>-3</sup> | 0.43 |
| 苯                 | <1.9x10-3              | <1.9x10-3                 | <1.9x10-1                 | <1.9x10-3             | <1.9x10-3             | <1.9x10-3             | 4    |
| 氮苯                | <1.2x10-3              | <1.2x10 <sup>-3</sup>     | <1.2x10-3                 | <1.2x10-3             | <1.2x10-3             | <1.2x10-3             | 270  |
| 1,2-二氯苯           | <1.5x10 <sup>-3</sup>  | <1.5x10 <sup>-3</sup>     | <1.5x10 <sup>-3</sup>     | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | 560  |
| 1,4二氮苯            | <1.5x10 <sup>-3</sup>  | <1.5x10 <sup>-3</sup>     | <1.5x10 <sup>-3</sup>     | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | <1.5x10 <sup>-3</sup> | 20   |
| 乙苯                | <1.2x10 <sup>-3</sup>  | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 28   |
| 苯乙烯               | $<1.1x10^{-3}$         | <1.1x10 <sup>-3</sup>     | <1.1x10 <sup>-3</sup>     | <1.1x10-3             | <1.1x10 <sup>-3</sup> | <1.1x10 <sup>-3</sup> | 1290 |
| 甲苯                | <1.3x10 <sup>-3</sup>  | <1.3x10-3                 | <1.3x10 <sup>-3</sup>     | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | <1.3x10 <sup>-3</sup> | 1200 |
| 间,对-二甲苯           | $<1.2x10^{-3}$         | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup>     | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | <1.2x10 <sup>-3</sup> | 570  |
| 绍二甲苯              | <1.2x10 <sup>-3</sup>  | <1.2x10-3                 | <1.2x10-3                 | <1.2x10-3             | <1.2x10 <sup>-3</sup> | <1.2x10-3             | 640  |

| 氟化物             | 170                                                    |
|-----------------|--------------------------------------------------------|
| 石油烃(C10-C40)    | 91                                                     |
| 重要              | 全属                                                     |
| 碍               | 11.0                                                   |
| 辆               | 0.12                                                   |
| 铬(六价)           | 2                                                      |
| 铜               | 18                                                     |
| 铅               | 43.0                                                   |
| 汞               | 0.066                                                  |
| 镍               | 13                                                     |
| 锌               | 64                                                     |
| 格               | 42                                                     |
| 半挥发性            | 生有机物                                                   |
| 硝基苯             | <0.09                                                  |
| 苯胺              | <0.01                                                  |
| 2-氣)卧           | <0.06                                                  |
| 苯并 [a] 蔥        | <0.10                                                  |
| 苯并 [a] 芘        | <0.10                                                  |
| 苯并 [b] 荧蕙       | <0.20                                                  |
| 苯并 [k] 荧蔥       | <0.10                                                  |
| £               | <0.10                                                  |
| 二苯并 [a,h] 蔥     | <0.10                                                  |
| 茚并 [1,2,3-cd] 芘 | <0.10                                                  |
| 兼               | <0.09                                                  |
| 挥发性             | 有机物                                                    |
| 样品编号            | SZ20051826T601-1<br>SZ20051826T601-2<br>SZ20051826T602 |
| 四氯化碳            | <1.3x10                                                |
| 氯仿              | <1.1X10*                                               |
| 氯甲烷             | <1.0X10*                                               |
| 1,1-二氟乙烷        | <1.2x10+                                               |
| 1,2-二氯乙烷        | <1.3x10+                                               |
| 1,1-二氯乙烷        | <1.0X10*                                               |
| 顺-1,2-二氟乙烯      | <1.3x10·                                               |
| 反-1,2-二氟乙烯      | <1.4x10                                                |
| 二氯甲烷            | <1.5x10 <sup>a</sup>                                   |
| 1,2-二氯丙烷        | <1.1X10*                                               |
| 1,1,1,2-四氯乙烷    | <1.2x10+                                               |
| 1,1,2,2-四氯乙烷    | <1.2x10                                                |
| 四氯乙烯            | <1.4x10                                                |
| 1,1,1-三氟乙烷      | <1.3x10                                                |

| 1,1,2-三氟乙烷 | <1.2x10  |
|------------|----------|
| 三氯乙烯       | <1.2x10* |
| 1,2,3-三氯丙烷 | <1.2x10  |
| 氯乙烯        | <1.0x10  |
| *          | <1.9x10* |
| 抓苯         | <1.2x10* |
| 1,2 一二氮苯   | <1.5x10* |
| 1,4二氯苯     | <1.5x10  |
| 乙苯         | <1.2x10  |
| 苯乙烯        | <1.1x10* |
| 甲苯         | <1.3x10* |
| 间二甲苯+对二甲苯  | <1.2x10* |
| 邻二甲苯       | <1.2x10  |

2019年度地下水自行监测结果统计见下表:

表 2.7-2 2019 年地下水监测结果汇总表

|       |                | 检测:                       | 结果                       | 执行标准       |       |  |
|-------|----------------|---------------------------|--------------------------|------------|-------|--|
| 检测项目  |                | 采样日期:                     | 2019.11.13               | TWIT DIVIE | 单位    |  |
|       |                | T0S0                      | T1S1                     | 限值         | 11/20 |  |
|       | pH             | 7.62                      | 7.10                     | <6.5~8.5   | 1     |  |
|       | 氟化物            | 0.2(L)                    | 0.2(L)                   | <1.0       | mg/I  |  |
| here. | 硫酸盐            | 16.5                      | 198                      | <250       | mg/I  |  |
| 可萃取   | (性石油烃(C10-C40) | 0.02                      | 0.01                     |            | mg/I  |  |
| 11:31 | 铜              | 0.2(L)                    | 0.2(L)                   | <1.00      | mg/I  |  |
| I     | 汞              | 2.19*10-4                 | 1.42x10 <sup>-4</sup>    | < 0.001    | mg/I  |  |
|       | 砷              | 2.03X10 <sup>-3</sup>     | 1.00x10 <sup>-3</sup> (L | < 0.01     | mg/I  |  |
| 重金    | 镉              | 5.00*104(L)               | 5.00*10 <sup>-4</sup> (L | < 0.005    | mg/I  |  |
| 展     | 六价铬            | 0.043                     | 0.010                    | < 0.05     | mg/I  |  |
|       | 铅              | 2.50x10 <sup>-3</sup> (L) | 2.50x10 <sup>-3</sup> (L | < 0.01     | mg/I  |  |
| I     | 镍              | 5.00x10 <sup>-3</sup> (L) | 5.00x10 <sup>-3</sup> (L | < 0.02     | mg/I  |  |
|       | 锌              | 0.05(L)                   | 0.05(L)                  | <1.00      | mg/I  |  |
|       | 三氯甲烷           | 0.4(L)                    | 0.4(L)                   | <60        | μg/I  |  |
|       | 四氯化碳           | 0.4(L)                    | 0.4(L)                   | <2.0       | μg/I  |  |
| 挥     | 苯              | 0.4(L)                    | 0.4(L)                   | <10.0      | μg/I  |  |
| 发     | 甲苯             | 0.3(L)                    | 0.3(L)                   | <700       | μg/I  |  |
| 性     | 二氯甲烷           | 0.5(L)                    | 0.5(L)                   | <20        | μg/I  |  |
| 10000 | 1,2-二氯乙烷       | 0.4(L)                    | 0.4(L)                   | <30.0      | μg/I  |  |
| 有     | 1,1,1-三氯乙烷     | 0.4(L)                    | 0.4(L)                   | <2000      | μg/I  |  |
| 机     | 1,1,2-三氯乙烷     | 0.4(L)                    | 0.4(L)                   | <5.0       | μg/I  |  |
| 物     | 1,2-二氯丙烷       | 0.4(L)                    | 0.4(L)                   | <5.0       | μg/I  |  |
| I     | 氯乙烯            | 0.5(L)                    | 0.5(L)                   | <5.0       | μg/I  |  |
|       | 1,1-二氯乙烯       | 0.4(L)                    | 0.4(L)                   | <30.0      | μg/I  |  |

| 1 1 | 反式 | -1,2-二氯乙烯 | 0.3(L)      | 0.3(L)                   | <50.0 | µg/L |
|-----|----|-----------|-------------|--------------------------|-------|------|
|     | 顺式 | -1,2-二氯乙烯 | 0.4(L)      | 0.4(L)                   | <50.0 | μg/L |
|     |    | 三氯乙烯      | 0.4(L)      | 0.4(L)                   | <70.0 | µg/L |
|     |    | 四氯乙烯      | 0.2(L)      | 0.2(L)                   | <40.0 | μg/L |
|     |    | 氯苯        | 0.2(L)      | 0.2(L)                   | <300  | µg/L |
|     |    | 乙苯        | 0.3(L)      | 0.3(L)                   | <300  | μg/L |
|     |    | 苯乙烯       | 0.2(L)      | 0.2(L)                   | <20.0 | µg/L |
|     | 一甲 | 对/间-二甲苯   | 0.5(L)      | 0.5(L)                   | <500  | μg/L |
| Ш   | 苯  | 邻-二甲苯     | 0.2(L)      | 0.2(L)                   | 500   | μg/L |
|     |    | 1,4-二氯苯   | 0.4(L)      | 0.4(L)                   |       | μg/L |
|     |    | 1,2-二氯苯   | 0.4(L)      | 0.4(L)                   |       | μg/L |
|     |    | 硝基苯       | 0.04(L)     | 0.04(L)                  | <5.0  | μg/L |
| 半挥  |    | 苯胺        | 20.0(L)     | 20.0(L)                  |       | µg/L |
| 发性  |    | 2-氯酚      | 3.8         | 3.6                      |       | μg/L |
| 有机  | 苯  | 并[a] 花    | 4.00x10-4(L | 4.00x10 <sup>-4</sup> (L | <0.01 | μg/L |
| 物   | 苯  | 并 [b] 荧蒽  | 0.30(L)     | 0.30(L)                  | <4.0  | μg/L |
|     |    | 萘         | 0.20(L)     | 0.20(L)                  | <100  | µg/L |

|     | 检测项目           | 检测:<br>采样日期:             | 10214                    | 执行标准     | 单位   |  |
|-----|----------------|--------------------------|--------------------------|----------|------|--|
|     |                | T3S2                     | T5S3                     | 限值       |      |  |
|     | pН             | 7.47                     | 7.35                     | <6.5~8.5 | 1    |  |
|     | 氟化物            | 0.2(L)                   | 0.2(L)                   | <1.0     | mg/L |  |
|     | 硫酸盐            | 9.7                      | 210                      | <250     | mg/L |  |
| 可萃取 | 化性石油烃(C10-C40) | 0.01                     | 0.01                     |          | mg/L |  |
|     | 铜              | 0.2(L)                   | 0.2(L)                   | <1.00    | mg/L |  |
|     | 汞              | 2.30X10-4                | 1.59x10 <sup>-4</sup>    | < 0.001  | mg/L |  |
|     | 砷              | 1.00x10 <sup>-3</sup> (L | 1.00x10 <sup>-3</sup> (L | < 0.01   | mg/L |  |
| 重金  | 镉              | 5.00*10 <sup>-4</sup> (L | 5.00*10 <sup>-4</sup> (L | < 0.005  | mg/L |  |
| 属   | 六价铬            | 0.018                    | 0.011                    | < 0.05   | mg/L |  |
| 1   | 铅              | 3.80X10 <sup>-3</sup>    | 2.60X10 <sup>-3</sup>    | < 0.01   | mg/L |  |
| - 1 | 镍              | 5.00x10 <sup>-3</sup> (L | 5.00x10 <sup>-3</sup> (L | < 0.02   | mg/L |  |
| 1   | 锌              | 0.05(L)                  | 0.05(L)                  | <1.00    | mg/L |  |
|     | 三氯甲烷           | 0.4(L)                   | 0.4(L)                   | <60      | μg/L |  |
|     | 四氯化碳           | 0.4(L)                   | 0.4(L)                   | <2.0     | μg/L |  |
| 挥   | 苯              | 0.4(L)                   | 0.4(L)                   | <10.0    | μg/L |  |
| 发   | 甲苯             | 0.3(L)                   | 0.3(L)                   | <700     | μg/L |  |
| 性   | 二氯甲烷           | 0.5(L)                   | 0.5(L)                   | <20      | μg/L |  |
| 有   | 1,2-二氯乙烷       | 0.4(L)                   | 0.4(L)                   | <30.0    | μg/L |  |
| 机   | 1,1,1-三氯乙烷     | 0.4(L)                   | 0.4(L)                   | <2000    | μg/L |  |
| 物   | 1,1,2-三氯乙烷     | 0.4(L)                   | 0.4(L)                   | <5.0     | μg/L |  |
| 120 | 1,2-二氯丙烷       | 0.4(L)                   | 0.4(L)                   | <5.0     | μg/L |  |
| 1   | 氯乙烯            | 0.5(L)                   | 0.5(L)                   | <5.0     | μg/L |  |

| 1   | 1, | 1-二氯乙烯   | 0.4(L)                  | 0.4(L)                   | <30.0   | μg/L |
|-----|----|----------|-------------------------|--------------------------|---------|------|
| I   | 反式 | -1,2氯乙烯  | 0.3(L)                  | 0.3(L)                   | <50.0   | μg/L |
|     | 顺式 | -1,2氯乙烯  | 0.4(L)                  | 0.4(L)                   | <50.0   | μg/L |
|     | 1  | 三氯乙烯     | 0.4(L)                  | 0.4(L)                   | <70.0   | μg/L |
|     |    | 四氯乙烯     | 0.2(L)                  | 0.2(L)                   | <40.0   | μg/L |
|     |    | 氯苯       | 0.2(L)                  | 0.2(L)                   | <300    | μg/L |
| I   |    | 乙苯       | 0.3(L)                  | 0.3(L)                   | <300    | μg/L |
| I   |    | 苯乙烯      | 0.2(L)                  | 0.2(L)                   | <20.0   | μg/L |
|     |    | 对/间-二甲苯  | 0.5(L)                  | 0.5(L)                   | <500    | µg/L |
|     | 甲苯 | 邻-二甲苯    | 0.2(L)                  | 0.2(L)                   | ~500    | µg/L |
| I   |    | 1,4-二氯苯  | 0.4(L)                  | 0.4(L)                   | No.     | μg/L |
|     |    | 1,2-二氯苯  | 0.4(L)                  | 0.4(L)                   | -       | μg/L |
| 1.0 |    | 硝基苯      | 0.04(L)                 | 0.04(L)                  | <5.0    | μg/L |
| 半挥  |    | 苯胺       | 20.0(L)                 | 20.0(L)                  | - 1-1-1 | μg/L |
| 发性  | -  | 2-氯酚     | 4.0                     | 6.0                      | 964     | μg/L |
| 有机  | 苯  | 并[a] 芘   | 4.00*10 <sup>4</sup> (L | 4.00*10 <sup>-4</sup> (L | < 0.01  | μg/L |
| 物   | 苯  | 并 [b] 荧蒽 | 0.30(L)                 | 0.30(L)                  | <4.0    | μg/L |
|     |    | 萘        | 0.20(L)                 | 0.20(L)                  | <100    | μg/L |

|     |                    |                    | 检测                        | 结果                 |                      | 1    |
|-----|--------------------|--------------------|---------------------------|--------------------|----------------------|------|
|     | 检测项目               |                    | 采样日期:                     | 2020.05.18         |                      | 单位   |
|     |                    | T0S0               | T1S1                      | T3S2               | T5S3                 |      |
|     | 样品编号               | SZ20051826S<br>001 | SZ20051826S1<br>01        | SZ20051826S<br>201 | SZ20051826S3<br>01-1 | -    |
| 军   | 1,1-二氯乙烷           | 0.4 (L)            | 0.4 (L)                   | 0.4 (L)            | 0.4 (L)              | μg/L |
| 发生  | 1,1,1,2-四氯<br>乙烷   | 0.3 (L)            | 0.3 (L)                   | 0.3 (L)            | a set of the second  | μg/L |
| 有机  | 1,1,2,2 一四氯<br>乙烷  | 0.4 (L)            | 0.4 (L)                   | 0.4 (L)            | 0.4 (L)              | μg/L |
| 刎   | 1,2,3-三氯丙烷         | 0.2 (L)            | 0.2 (L)                   | 0.2 (L)            | 0.2 (L)              | μg/I |
| #   | 苯并[a] 芘            | 4.00x10-4 (L)      | 4.00x10 <sup>-4</sup> (L) | 4.00x10-4 (L)      |                      | μg/I |
| 军   | 苯并[a] 蔥            | 0.20 (L)           | 0.20 (L)                  | 0.20 (L)           |                      | μg/I |
| 矣   | 苯并[k] 荧蒽           | 0.54 (L)           | 0.54 (L)                  | 0.54 (L)           | 0.54 (L)             | μg/I |
| 4   | 蔥                  | 0.082 (L)          | 0.082 (L)                 | 0.082 (L)          | 0.082 (L)            | μg/I |
| 有   | 二苯并 [a,h]          | 0.01 (L)           | 0.01 (L)                  | 0.01 (L)           |                      | μg/I |
| 孔 物 | 茚并<br>[1,2,3-cd] 花 | 0.047 (L)          | 0.047 (L)                 | 0.047 (L)          |                      | μg/L |

2019年土壤和地下水自行监测表明:厂区内各土壤监测点位的各监测指标检测结果均满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值,地下水监测点位各监测指标检测结果均满足《地下水质量标准》III类标准限值和风险筛选值要求。

# 2.7.2 2022 年土壤及地下水自行监测

### (1) 点位布设

2022年12月土壤和地下水自行监测,在厂区内共计布设土壤监测点位8个,

其中二类单元(物料仓库与危废暂存区)主要采集紧邻表土共计2个;一类单元(包括原料暂存与废水处理区、生产区)共布设深层土壤2个,表层土壤4个。地下水监测井布设4个,其中1个为已有监测井(W1),3个新建监测井(BJ1、W2、W3),地下水背景对照点(BJ1)靠近地块地下水上游方向,位于企业东南侧围墙边。

具体的点位布设示意图见图 2.7-2。



图 2.7-2 2022 年企业土壤和地下水监测布点示意图

#### (2) 监测结果

具体的土壤和地下水检测结果见表 2.7-3~6 所示。

2022年土壤和地下水自行监测表明厂区内的土壤环境满足《土壤环境质量建设用地:土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值,部分地下水监测点位的锰、氨氮、耗氧量超过《地下水质量标准》III类标准限值。

其中监测井 W1、W2、W3 以及 BJ1(背景点)的锰检出结果均超过了《地下水质量标准》(GB/T 14848-2017) III类水质标准。监测井 W2、W3 和 BJ1(背景点)的氨氮、监测井 W1、W2、W3 的耗氧量,其相关检出结果超过《地下水

质量标准》(GB/T 14848-2017)Ⅲ类水质标准。

综上,除了重金属锰以及理化指标氨氮、耗氧量在部分监测井存在超出Ⅲ类 水质标准情况,其余指标均满足相关要求。

根据企业内地下水监测点位的布设及地下水样品监测结果,对照《地下水质量标准》(GB/T 14848-2017),地下水的氨氮、耗氧量、锰,属于一般化学指标,均不属于毒理学指标,基本不会对人体造成伤害。此外,锰作为重金属属于非气态污染物,不存在吸入室外空气中来自地下水的气态污染物和吸入室内空气中来自地下水的气态污染物暴露途径。因此,地下水中的氨氮、耗氧量、锰虽然在个别监测井存在超出III类水质标准,但该企业的地下水对人体健康的风险总体可以接受。

表 2.7-3 2022 年土壤样品重金属与氟化物检测结果一览表

| 检测项目 | 样品数量 | 检出个数 | 检出率% | 最小值/mg/kg | 最大值/mg/kg            | 二类用地<br>土壤筛选值 | 超筛选值个数(个) |
|------|------|------|------|-----------|----------------------|---------------|-----------|
| 汞    | 8    | 8    | 100  | 0.018     | 0.145                | 38            | 0         |
| 砷    | 8    | 8    | 100  | 2.25      | 17.3                 | 60            | 0         |
| 镉    | 8    | 8    | 100  | 0.04      | 0.65                 | 65            | 0         |
| 铅    | 8    | 8    | 100  | 23        | 548                  | 800           | 0         |
| 铜    | 8    | 8    | 100  | 8         | 115                  | 18000         | 0         |
| 镍    | 8    | 7    | 87.5 | ND        | 5                    | 900           | 0         |
| 锌    | 8    | 8    | 100  | 27        | 1.11×10 <sup>3</sup> | 135000        | 0         |
| 铬    | 8    | 8    | 100  | 17        | 73                   | 3740          | 0         |
| 锑    | 8    | 8    | 100  | 5.0       | 157                  | 180           | 0         |
| 锰    | 8    | 8    | 100  | 79.4      | 391                  | 8240          | 0         |
| 锡    | 8    | 8    | 100  | 3.22      | 8.20                 | 271000        | 0         |
| 氟化物  | 8    | 8    | 100  | 378       | 1.25×10 <sup>3</sup> | 16100         | 0         |

备注: 1、ND表示未检出: 2、表中仅列出有检出项目,本表所列样品数不包含对照点样品。

表 2.7-3 2022 年土壤样品重金属与氟化物检测结果一览表

| 检测 | 则指标         | 汞     | 砷     | 六价铬   | 镉     | 铅     | 铜     | 镍     | 锌        | 铬     | 锑     | 锰     | 锡      | 氟化物     |
|----|-------------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|--------|---------|
| 风险 | 筛选值         | 38    | 60    | 5.7   | 65    | 800   | 18000 | 900   | 135000   | 3740  | 180   | 8240  | 271000 | 16100   |
|    | 位编号<br>E样深度 | mg/kg    | mg/kg | mg/kg | mg/kg | mg/kg  | mg/kg   |
| S1 | 2.5-3.0     | 0.029 | 3.29  | ND    | 0.04  | 53    | 8     | ND    | 43       | 18    | 5.0   | 147   | 3.88   | 515     |
| S2 | 5.0-5.5     | 0.062 | 5.98  | ND    | 0.13  | 258   | 18    | 5     | 87       | 17    | 20.6  | 144   | 3.98   | 846     |
| T1 | 0-0.3       | 0.045 | 5.51  | ND    | 0.13  | 104   | 23    | 5     | 111      | 19    | 15.8  | 169   | 6.00   | 824     |
| T2 | 0-0.3       | 0.046 | 2.25  | ND    | 0.05  | 23    | 8     | 4     | 27       | 17    | 5.4   | 79.4  | 3.85   | 378     |
| T3 | 0-0.3       | 0.039 | 3.94  | ND    | 0.07  | 41    | 12    | 4     | 67       | 24    | 5.5   | 205   | 3.62   | 1.25×10 |
| T5 | 0-0.3       | 0.018 | 9.45  | ND    | 0.09  | 33    | 18    | 4     | 79       | 61    | 15.9  | 356   | 3.22   | 1.20×10 |
| T6 | 0-0.3       | 0.107 | 17.3  | ND    | 0.65  | 163   | 101   | 4     | 654      | 73    | 53.0  | 391   | 7.02   | 607     |
| T4 | 0-0.3       | 0.145 | 9.31  | ND    | 0.45  | 548   | 115   | 5     | 1.11×10³ | 59    | 157   | 300   | 8.20   | 623     |

表 2.7-4 2022 年土壤中检出有机物结果统计与评价表

| 检测项目                  | 单位    | 样品数量 | 检出个数 | 检出率% | 最小值 | 最大值                  | 第二类用地<br>土壤风险筛选值 mg/kg | 超筛选值个数(个) |
|-----------------------|-------|------|------|------|-----|----------------------|------------------------|-----------|
| 间,对-二甲苯               | μg/kg | 8    | 1    | 12.5 | ND  | 2.9                  | 570                    | 0         |
| 萘                     | mg/kg | 8    | 1    | 12.5 | ND  | 0.15                 | 70                     | 0         |
| 苯并(a)蒽                | mg/kg | 8    | 1    | 12.5 | ND  | 0.5                  | 15                     | 0         |
| 崫                     | mg/kg | 8    | 2    | 25.0 | ND  | 0.6                  | 1293                   | 0         |
| 苯并(b)荧蒽               | mg/kg | 8    | 1    | 12.5 | ND  | 1.1                  | 15                     | 0         |
| 苯并(k)荧蒽               | mg/kg | 8    | 2    | 25.0 | ND  | 0.4                  | 151                    | 0         |
| 苯并(a)花                | mg/kg | 8    | 1    | 12.5 | ND  | 0.4                  | 1.5                    | 0         |
| 茚并[1,2,3-cd]芘         | mg/kg | 8    | 1    | 12.5 | ND  | 0.2                  | 15                     | 0         |
| 邻苯二甲酸二 (2-<br>乙基己基) 酯 | mg/kg | 8    | 4    | 50.0 | ND  | 2.8                  | 121                    | 0         |
| 石油烃 (C10-C40)         | mg/kg | 8    | 8    | 100  | 16  | 1.20×10 <sup>3</sup> | 4500                   | 0         |

备注: 1、ND表示未检出: 2、表中仅列出有检出项。

表 2.7-5 2022 年土壤有机物检测结果一览表

| 检测项目                    | 点位编 | 号及采样深度  | 单位    | 检出值                  | 第二类用地土壤风险筛选值 mg/kg |
|-------------------------|-----|---------|-------|----------------------|--------------------|
| 间,对-二甲苯                 | S2  | 5.0-5.5 | μg/kg | 2.9                  | 570                |
| 萘                       | S2  | 5.0-5.5 | mg/kg | 0.15                 | 70                 |
| 苯并(a)蒽                  | S2  | 5.0-5.5 | mg/kg | 0.5                  | 15                 |
| 蔵                       | \$2 | 5.0-5.5 | mg/kg | 0.6                  | 1202               |
| /H                      | T4  | 0-0.3   | mg/kg | 0.1                  | 1293               |
| 苯并(b)荧蒽                 | S2  | 5.0-5.5 | mg/kg | 1.1                  | 15                 |
| 苯并(k)荧蒽                 | S2  | 5.0-5.5 | mg/kg | 0.4                  | 151                |
| 本升(K)火燃                 | T4  | 0-0.3   | mg/kg | 0.1                  | 151                |
| 苯并(a)芘                  | S2  | 5.0-5.5 | mg/kg | 0.4                  | 1.5                |
| 茚并[1,2,3-cd]芘           | S2  | 5.0-5.5 | mg/kg | 0.2                  | 15                 |
|                         | S2  | 5.0-5.5 | mg/kg | 0.4                  |                    |
| 邻苯二甲酸二 (2-乙             | T1  | 0-0.3   | mg/kg | 1.0                  | 121                |
| 基己基) 酯                  | T6  | 0-0.3   | mg/kg | 2.8                  | 121                |
|                         | T4  | 0-0.3   | mg/kg | 2.1                  |                    |
|                         | S1  | 2.5-3.0 | mg/kg | 16                   |                    |
|                         | S2  | 5.0-5.5 | mg/kg | 179                  |                    |
|                         | T1  | 0-0.3   | mg/kg | 100                  |                    |
| 石油烃 (C10-C40)           | T2  | 0-0.3   | mg/kg | 28                   | 4500               |
| 7-1 (四 AE 3 C 10-C 40 / | T3  | 0-0.3   | mg/kg | 41                   | 4300               |
|                         | T5  | 0-0.3   | mg/kg | 16                   |                    |
|                         | T6  | 0-0.3   | mg/kg | $1.20 \times 10^{3}$ |                    |
|                         | T4  | 0-0.3   | mg/kg | 336                  |                    |

备注: 1、ND表示未检出; 2、表中仅列出有检出项。

表 2.7-6 2022 年地下水样品检测结果一览表

| 16 1- ak mi  | IA DILLE I— | 24 15 |          | 监测                   | 井编号                  |                      | 1.4.4.4.4.4.4.       |
|--------------|-------------|-------|----------|----------------------|----------------------|----------------------|----------------------|
| 指标类型         | 检测指标        | 单位    | W1       | W2                   | W3                   | ВЈ1                  | 地下水筛选值               |
|              | 汞           | μg/L  | ND       | ND                   | ND                   | ND                   | 1                    |
|              | 砷           | μg/L  | 0.3      | ND                   | ND                   | 0.3                  | 10                   |
| 1 1 1        | 六价铬         | mg/L  | ND       | ND                   | ND                   | ND                   | 0.05                 |
| 19           | 铅           | μg/L  | 0.50     | ND                   | 0.38                 | ND                   | 10                   |
| 1 1          | 镉           | μg/L  | ND       | 0.06                 | 0.08                 | 0.08                 | 5                    |
| 1            | 铜           | μg/L  | 0.58     | 0.30                 | 0.23                 | 0.38                 | 1000                 |
|              | 镍           | μg/L  | 5.57     | 5.71                 | 3.16                 | 7.64                 | 20                   |
| 重金属          | 锰           | μg/L  | 341      | 850                  | 852                  | 1.15×10³             | 100                  |
| 里亚偶          | 锌           | μg/L  | 6.17     | 7.67                 | 20.8                 | 11.2                 | 1000                 |
|              | 铁           | μg/L  | 93.3     | 74.0                 | 214                  | 65.4                 | 300                  |
| 11/16        | 铝           | μg/L  | 177      | 48.5                 | 29.5                 | 25.2                 | 200                  |
| 11           | 钠           | μg/L  | 8.69×10³ | 6.95×10 <sup>4</sup> | 9.35×10 <sup>4</sup> | 5.56×10 <sup>4</sup> | 2×10 <sup>5</sup>    |
| 1 1          | 硒           | μg/L  | 0.47     | 2.12                 | 2.42                 | 1.46                 | 10                   |
| 1            | 总铬          | μg/L  | 0.23     | 6.00                 | 6.02                 | 3.83                 | 3.98×10 <sup>4</sup> |
| 6            | 锡           | μg/L  | 0.53     | 0.35                 | 0.20                 | 0.36                 | 2.71×10 <sup>4</sup> |
| C I          | 锑           | μg/L  | 0.28     | ND                   | ND                   | ND                   | 5                    |
| <b>军发性有机</b> | 氯仿          | μg/L  | ND       | ND                   | ND                   | ND                   | 60                   |
| 物            | 四氯化碳        | μg/L  | ND       | ND                   | ND                   | ND                   | 2.0                  |

| 48.1= 46.m) | 14 201464-          | ** 42 |     | 监测  | 井编号 |     | 0.00   |
|-------------|---------------------|-------|-----|-----|-----|-----|--------|
| 指标类型        | 检测指标                | 单位    | W1  | W2  | W3  | BJ1 | 地下水筛选值 |
|             | 苯                   | μg/Ĺ  | ND  | ND  | ND  | ND  | 10.0   |
|             | 甲苯                  | μg/L  | ND  | ND  | ND  | ND  | 700    |
|             | 乙苯                  | μg/L  | ND  | ND  | ND  | ND  | 300    |
|             | 间,对-二甲苯             | μg/L  | ND  | ND  | ND  | ND  | 500    |
|             | 邻二甲苯                | μg/L  | ND  | ND  | ND  | ND  | 500    |
|             | 苯乙烯                 | μg/L  | ND  | ND  | ND  | ND  | 20     |
| = 0         | 萘                   | μg/L  | 1.0 | 1.4 | 1.6 | 0.8 | 100    |
|             | 苯并(a)蒽              | μg/L  | ND  | ND  | ND  | ND  | 2.74   |
| -1          | 蔗                   | μg/L  | ND  | ND  | ND  | ND  | 274    |
| 半挥发性有       | 苯并(b)荧蒽             | μg/L  | ND  | ND  | ND  | ND  | 4.0    |
| 机物          | 苯并(k)荧蒽             | μg/L  | ND  | ND  | ND  | ND  | 27.4   |
|             | 茚并 (1,2,3-cd) 芘     | μg/L  | ND  | ND  | ND  | ND  | 2740   |
|             | 二苯并(a,h)蒽           | μg/L  | ND  | ND  | ND  | ND  | 270    |
|             | 苯并(a)芘              | μg/L  | ND  | ND  | ND  | ND  | 0.01   |
| 半挥发性有       | 邻苯二甲酸二(2-乙基己<br>基)酯 | μg/L  | ND  | 5.8 | 4.3 | ND  | 8      |
| 机物          | 邻苯二甲酸丁基苄基酯          | μg/L  | ND  | ND  | ND  | ND  | 451    |

| TF: (= M: m) | 1A Spills I-                                    | 40   |       | 监测    | 牛编号   |       | Tan Ovario |
|--------------|-------------------------------------------------|------|-------|-------|-------|-------|------------|
| 指标类型         | 检测指标                                            | 单位   | W1    | W2    | W3    | BJ1   | 地下水筛选值     |
|              | 邻苯二甲酸二正辛酯                                       | μg/L | ND    | ND    | ND    | ND    | 140        |
| 石油烃类         | 可萃取性<br>石油烃 (C <sub>10</sub> -C <sub>40</sub> ) | mg/L | 0.04  | 0.04  | 0.03  | 0.06  | 1.05       |
|              | 浊度                                              | NTU  | 48    | 73    | 56    | 67    | 3          |
|              | pH 值                                            | 无量纲  | 6.78  | 6.89  | 6.93  | 7.25  | 6.5-8.5    |
|              | 臭和味                                             | 1    | 无     | 无     | 无     | 无     | 无          |
|              | 肉眼可见物                                           | I    | 微量    | 微量    | 微量    | 微量    | 无          |
| 理化指标         | 阴离子表面活性剂                                        | mg/L | ND    | 0.06  | ND    | ND    | 0.3        |
|              | 氨氮                                              | mg/L | 0.159 | 1.34  | 1.82  | 0.816 | 0.50       |
|              | 色度                                              | 度    | ND    | .5    | ND    | ND    | 15         |
| 11           | 总硬度                                             | mg/L | 168   | 148   | 126   | 148   | 450        |
|              | 溶解性总固体                                          | mg/L | 195   | 336   | 366   | 300   | 1000       |
|              | 挥发酚                                             | mg/L | ND    | ND    | ND    | ND    | 0.002      |
|              | SO <sub>4</sub> <sup>2</sup>                    | mg/L | 5.67  | 13.5  | 3.76  | 7.15  | 250        |
| İ            | 硝酸盐氮                                            | mg/L | 0.492 | 0.161 | 0.077 | 0.242 | 20         |
| İ            | 亚硝酸盐氮                                           | mg/L | ND    | ND    | ND    | ND    | 1          |
| 理化指标         | Cl                                              | mg/L | 4.89  | 15.8  | 22.6  | 11.6  | 250        |
|              | F                                               | mg/L | 0.302 | 0.198 | 0.269 | 0.288 | 1          |
|              | 氰化物                                             | mg/L | ND    | ND    | ND    | ND    | 0.05       |
|              | 碘化物                                             | mg/L | ND    | ND    | 0.068 | ND    | 0.08       |

| 指标类型 |      | 标 单位 |      | To show and |      |      |        |
|------|------|------|------|-------------|------|------|--------|
|      | 检测指标 |      | W1   | W2          | W3   | BJ1  | 地下水筛选值 |
|      | 耗氧量  | mg/L | 4.55 | 6.29        | 7.82 | 1.98 | 3.0    |
|      | 硫化物  | mg/L | ND   | ND          | ND   | ND   | 0.02   |

注:表中仅列检出项目, "ND"表示未检出。

### (3) 监测结果对比分析

茂名天保再生资源发展有限公司于 2019 年委托深圳市政院检测有限公司 茂名分公司编制土壤和地下水自行监测调查报告。深圳市政院检测有限公司茂名 分公司委托中证检测于 2019 年 11 月 05~13 日开展现场采样工作,共采集 6 个 深层土孔样品,并建设 4 口地下水监测井,完成 4 个地下水样品的采集,于 2019 年 12 月 11 日完成监测。

同时,于2020年5月18日中证检测二次进场补充采集了1个土壤表层点位以及利用原有的4个地下水监测井增加了10个地下水有机物指标的采样。

因土壤采样点位存在差异,无法直接进行数据比对,但通过对两次的监测结果进行分析。通过与 2020 年的茂名天保再生资源发展有限公司土壤和地下水自行监测调查报告结果进行比对可知。土壤重金属指标均未超过第二类用地筛选值,与本次监测结果一致。土壤挥发性有机物与半挥发性有机物均未检出,检出数据均低于第二类用地筛选值,本次自行监测的土壤挥发性有机物与半挥发性有机物检测数据也均低于第二类用地筛选值。土壤石油烃(C10-C40)指标本次监测在所有样品中均有检出,情况与本次监测结果一致,同时,两次监测的石油烃(C10-C40)指标也均低于第二类用地筛选值。土壤理化指标中氟化物检出情况在两次监测过程中,均低于第二类用地筛选值。可见,本次土壤和地下水自行监测的土壤样品监测结论与历史情况一致,均符合相关技术指南要求的筛选值。

通过与 2020 年的茂名天保再生资源发展有限公司土壤和地下水自行监测调查报告结果进行比对可知。地下水重金属指标(铅、铜、镍、镉、汞、砷、锌、六价铬)均低于《地下水质量标准》(GB/T 14848-2017)III类水质标准,与本次监测结果一致。地下水挥发性有机物指标(氯仿、四氯化碳、苯、甲苯、乙苯、间,对-二甲苯、邻-二甲苯、苯乙烯)均未检出,符合《地下水质量标准》(GB/T 14848-2017)III类水质标准,与本次监测结果一致。地下水半挥发性有机物指标存在个别检出情况,检出结果均低于《地下水质量标准》(GB/T 14848-2017)III类水质标准,与本次监测结果一致。地下水可萃取性石油烃(C10-C40)指标在所有样品中有检出,检出情况与本次监测相同,其检出结果均低于《地下水质量标准》(GB/T 14848-2017)III类水质标准,与本次监测结果一致。同时,2020 年的茂名天保再生资源发展有限公司土壤和地下水自行监测项目在理化指标方便

主要测试了pH、硫酸盐和氟化物,检测结果均满足或低于《地下水质量标准》 (GB/T 14848-2017) III类水质标准,也与本次自行监测项目检测情况一致。可见,本次土壤和地下水自行监测的地下水样品监测结论与历史情况一致。

## 3、重点单位生产及污染防治情况

## 3.1 生产概况

### 3.1.1 项目组成

茂名天保再生资源发展有限公司成立于 2010 年 9 月 29 日,注册地址为: 茂名市茂南区公馆镇荔枝塘枫林垌 268 号大院,公司类型为其他有限责任公司, 法定代表人为梁练。经营范围:收购和销售;生产性废旧金属、非生产性废旧金 属,其他废旧物资(不含进口固体废物、危险废物);废电子、电器资源化处理, 报废机动车回收拆解。统一社会信用代码:914409025625769099。公司现有员工 150 人,其中安全管理人员 1 人。公司员工实行单班制,每班工作 8 小时,年 工作日 330 天。

| 序号 | 建筑名称         | 层数 | 占地面积     | 建筑面积     | 建造结构 |
|----|--------------|----|----------|----------|------|
|    |              |    | $(m^2)$  | $(m^2)$  |      |
| 1  | 综合楼          | 6  | 448      | 2735     | 框架   |
| 2  | 废家电仓库        | 1  | 1009     | 1009     | 框架   |
| 3  | 物料仓库         | 1  | 2209     | 2209     | 框架   |
| 4  | 危废暂存间        | 1  | 1009     | 1009     | 框架   |
|    | (三)          |    |          |          |      |
| 5  | 家电拆解车        | 1  | 1978     | 1978     | 框架   |
|    | 间 (一)        |    |          |          |      |
| 6  | 家电拆解车        | 1  | 1978     | 1978     | 框架   |
|    | 间(二)         |    |          |          |      |
| 7  | 报废机动车        | 1  | 10786.68 | 10786.68 | 框架   |
|    | 拆解车间         |    |          |          |      |
| 8  | 配电房          | 1  | 144      | 144      | 砖混   |
| 9  | 危废暂存间        | 1  | 126.08   | 126.08   | 框架   |
|    | (-)          |    |          |          |      |
| 10 | 危废暂存间        | 1  | 230      | 230      | 框架   |
|    | ( <u>_</u> ) |    |          |          |      |
| 11 | 废旧家电堆        | /  | 2600     | /        | /    |
|    | 场            |    |          |          |      |
| 12 | 小车堆场         | /  | 3120     | /        | /    |
| 13 | 大车堆场         | /  | 3870     | /        | /    |

表 3.1-1 主要建(构)筑物一览表

### 3.1.2 主要原辅材料及产品

茂名天保再生资源发展有限公司主要从事收购和销售生产性废旧金属、非生产性废旧金属,其他废旧物资(不含进口固体废物、危险废物);废电子、电器资

源化处理,报废机动车回收拆解。

结合企业的生产工艺,该企业的主要原料为废旧家电(四机一脑)和报废机动车。成品则为拆解得到各类塑料、金属、固废以及部分危废,属于物理拆解过程,不涉及其他辅料加入。因此,该企业的原辅材料以及成品情况统计见表 3.1-2。

表 3.1-2 主要原材料及产品汇总表

| 原料       | 主要成品          | 成品类别     | 处理方式   | 成品占比                           |  |
|----------|---------------|----------|--------|--------------------------------|--|
| CRT 电视机、 | 废塑料           | 一般固废     | 破碎外销   |                                |  |
|          | 废金属           | 一般固废     | 压块外销   | 所含铜、铝、钢铁、塑料、玻璃等占90%以上,且都可以回收利用 |  |
|          |               | 危险废物     | 交给有资质单 |                                |  |
|          | 废电路板          |          | 位处理    |                                |  |
| CRT 台式电脑 | CDT THIS      | 危险废物     | 交给有资质单 |                                |  |
|          | CRT 玻璃        |          | 位处理    |                                |  |
|          | 荧光粉           | 危险废物     | 交给有资质单 |                                |  |
|          | 火儿初           | <u> </u> | 位处理    |                                |  |
|          | 废塑料           | 一般固废     | 破碎外销   |                                |  |
|          | 废金属           | 一般固废     | 压块外销   |                                |  |
|          | 废软板           | 一般固废     | 外销     | 所含金属、塑料等                       |  |
| 废液晶电视、废  | 废面板玻璃         | 一般固废     | 外销     | 占 90%以上,且都                     |  |
| 液晶电脑     | 废电路板          | 危险废物     | 交给有资质单 | 可以回收利用                         |  |
|          | 及电路似          | <u> </u> | 位处理    |                                |  |
|          | 废汞灯           | <b>告</b> | 交给有资质单 |                                |  |
|          | 及水月           | 危险废物     | 位处理    |                                |  |
|          | 废温控器          | 一般固废     | 外销     |                                |  |
|          | 废塑料           | 一般固废     | 破碎外销   | ,<br>-<br>-<br>-<br>- 拆解所得铜、铝、 |  |
|          | 废密封条          | 一般固废     | 外销     |                                |  |
|          | 废玻璃           | 一般固废     | 外销     |                                |  |
|          | 废铁架           | 一般固废     | 外销     |                                |  |
| 废旧冰箱     | 废压缩机          | 一般固废     | 外销     | 90%以上,均可以回收利用                  |  |
|          | 废散热           | 一般固废     | 外销     |                                |  |
|          | 废泡沫           | 一般固废     | 外销     |                                |  |
|          | 废金属           | 一般固废     | 压块外销   |                                |  |
|          | 制冷剂、润滑油       | 危险废物     | 交给有资质单 |                                |  |
|          |               |          | 位处理    |                                |  |
|          | 废塑料           | 一般固废     | 破碎外销   |                                |  |
|          | 废金属           | 一般固废     | 压块外销   |                                |  |
|          | 废压缩机          | 一般固废     | 外销     | 拆解所得金属、塑                       |  |
| 废旧空调     | 废电路板          | 危险废物     | 交给有资质单 | 料等占 90%以上,<br>均可以回收利用。         |  |
|          |               |          | 位处理    |                                |  |
|          | 制冷剂、润滑油       | 危险废物     | 交给有资质单 |                                |  |
|          | 中代マグリ、 4円4月4日 | <u> </u> | 位处理    |                                |  |
| 废旧洗衣机    | 废塑料           | 一般固废     | 破碎外销   |                                |  |
|          | 废金属           | 一般固废     | 压块外销   | 拆解所得金属、塑                       |  |
|          | 废电机           | 一般固废     | 外销     | 料等占90%以上,                      |  |
|          | 废电路板          | 危险废物     | 交给有资质单 | 均可以回收利用。                       |  |
|          |               |          | 位处理    |                                |  |
| 报废汽车拆解   | 废铅蓄电池         | 危险废物     | 交给有资质单 | 拆解所得金属、塑                       |  |

| 原料          | 主要成品        | 成品类别                                       | 处理方式   | 成品占比                       |
|-------------|-------------|--------------------------------------------|--------|----------------------------|
|             |             |                                            | 位处理    | 料等占90%以上,                  |
|             | 废气囊         | 一般固废                                       | 引爆后外销  | 均可以回收利用。                   |
|             | 成日层次儿明      | 危险废物                                       | 交给有资质单 |                            |
|             | 废尾气净化器      |                                            | 位处理    |                            |
|             |             | 危险废物                                       | 交给有资质单 |                            |
|             | 及4 7月1日     |                                            | 位处理    |                            |
|             | 废机油滤清器      | 危险废物                                       | 交给有资质单 |                            |
|             | )及小山田(心)目 伯 |                                            | 位处理    |                            |
|             | 废制冷剂        | 危险废物                                       | 交给有资质单 |                            |
|             |             |                                            | 位处理    |                            |
|             | 废电路板        | <br>  危险废物                                 | 交给有资质单 |                            |
|             | 及电时似        | / 10   20   20   20   20   20   20   20    | 位处理    |                            |
|             | 废轮胎         | 一般固废                                       | 外销     |                            |
|             | 废油箱         | 一般固废                                       | 外销     |                            |
|             | 废发动机        | 一般固废                                       | 切割外销   |                            |
|             | 废塑料         | 一般固废                                       | 破碎外销   |                            |
|             | 废玻璃         | 一般固废                                       | 外销     |                            |
|             | 废钢铁         | 一般固废                                       | 切割外销   |                            |
|             | 各类零部件       | 一般固废                                       | 外销     |                            |
|             | 废车架         | 一般固废                                       | 切割外销   |                            |
|             | 废矿物油        | 危险废物                                       | 交给有资质单 |                            |
|             | 及4 7月田      | [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]    | 位处理    |                            |
|             | 废轮胎         | 一般固废                                       | 外销     |                            |
|             | 废座椅         | 一般固废                                       | 外销     |                            |
|             | 废车架         | 一般固废                                       | 切割外销   | ]<br>- 拆解所得金属、塑            |
|             | 废塑料         | 一般固废                                       | 破碎外销   | 料等占 90%以上,                 |
| 报废摩托车拆解<br> | 废电路板        | 危险废物                                       | 交给有资质单 | 7 科寺百 90%以上,<br>1 均可以回收利用。 |
|             | <b>放</b>    | [四] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2 | 位处理    | 一场可以凹牧州用。                  |
|             | 废发送机        | 一般固废                                       | 切割外销   |                            |
|             | 废油箱         | 一般固废                                       | 外销     |                            |
|             | 废铅蓄电池       |                                            | 交给有资质单 |                            |
|             | 次扣          |                                            | 位处理    |                            |

通过对主要原材料以及成品分析可知,企业生产过程中拆解的废旧家电(四机一脑)和报废机动车均有较大重复利用价值,可回收的金属、塑料等均在90%以上,属于一般固废,对于企业的土壤和地下水影响较小。剩余少量的危险废物,企业专门设施3个危废暂存间,分门别类存放,并定期交由交给有资质单位处理。

# 3.2 设施布置

# 3.2.1 厂区平面布置

茂名天保再生资源发展有限公司位于茂南区公馆镇荔枝塘枫林垌 268 号大院,总占地面积约 47160 平方米。企业在满足工艺流程、原材料及产品运输方便的前提下,根据用地的地理位置及特点,对生产区域进行统筹规划,厂区南侧

设置一个主出入口。

厂区整体呈不规则矩形,厂内功能分区大致分为办公生活区、仓储区、生产 堆场,其中办公生活区、仓储区位于厂区西侧综合楼、1#仓库、2#仓库、3#仓库 由南向北依次纵向布置;生产区位于厂区中部由拆解车间(一)、拆解车间(二)、 报废机动车拆解车间由南向北依次纵向布置;堆场区域位于厂区东侧纵向布置。

从整个平面布置来看,所在厂区平面布置较简单,交通便利,以最有效的布置服务于生产,减少物品转运路线,并满足消防的要求。厂区整体布置与厂区外现有运输线路、排水系统、周围场地标高等相协调,满足生产、运输要求。厂区平面布置见图 3.2-1。



图 3.2-1 公司厂区平面布置图

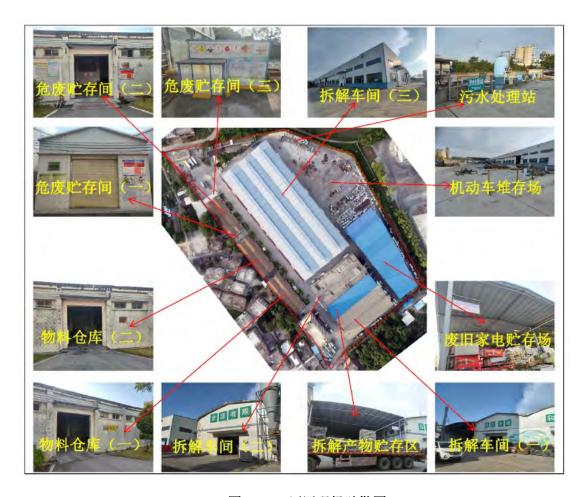



图 3.2-2 厂区现场踏勘图

### 3.3 各设施生产工艺与污染防治情况

### 3.3.1 生产工艺及产污环节

从处理对象上分,项目工艺流程总体分两大类;废旧家电拆解总工艺流程分4 大步骤进行:废旧家电进场区卸货质检→分类预拆解→ 破碎、磁选、分选、打包处理→进入产品物料仓库待销售或外运处理;拆解系统主要包括四机一脑拆解设备:废电视(含液晶)/电脑(含液晶)拆解综合线;废冰箱冰柜自动拆解线;废洗衣机拆解线;废空调器拆解线;废小家电综合拆解线。

报废机动车拆解总工艺流程分 6 大步骤进行: 检查和登记→进场区卸货→外部放净油料→总体拆解→零部件拆解及检验分类→分类贮存和管理或外运处理。整个生产工艺采取物理方式对废弃电器电子及报废机动车进行收集、运输、储存、拆解、破碎,实现废弃电器电子和报废机动车的绿色收集破碎分离、再资源化逆向物流模式。

### 3.3.1.1"四机一脑"拆解线

(一) 电视/电脑拆解综合线

#### (1) 工艺流程图

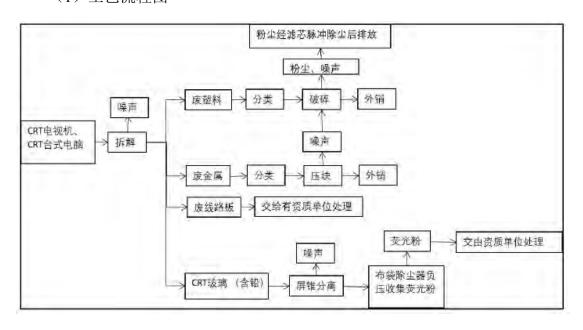



图 3.3-1 电视/电脑处理工艺流程及产污环节图

#### (2) 工艺流程简述

①废 CRT 电视机及台式电脑所含铜、铝、钢铁、塑料、玻璃等占 90%以上,而且都可以回收利用。初步拆解得到金属、塑料、电线、线路板、显示器。金属和塑料分别经过分类、压块和切割或破碎等简单处理后可以出售或转移利用,显示器需进一步拆解,线路板委托有资质单位处置。

废 CRT 电视机及台式电脑经流水线拆解外壳、线路板、铁壳、偏转线圈后,得到阴极射线管(CRT)再经专门设备拆解,采用加热冷却玻壳分离技术,分离含铅玻璃,屏玻璃可以出售再利用,锥玻璃含铅委托有资质单位进行处理。负压环境下真空抽取收集荧光粉,荧光粉最后交有资质单位处理处置。拆解得到的废五金经过压块后销售给相关五金处理企业,废塑料经过破碎后销售给相关塑料加工厂。

- ② 具体操作流程如下:
- 1) 用叉车将待拆的 CRT 废旧电视机及 CRT 台式电脑式运至拆解线的上料端处,人工搬上动力输送带,输送带将废旧电视机送到各个工位。
  - 2) 拆除电源线、拆除后壳, 机内清理。
- 3) 拆除电视机前壳取出 CRT, 拆除电路板和拆除喇叭及偏光调节器, 偏转线圈。
  - 4) 拆除前壳取出 CRT, 再拆除清磁线、接地线、变压器、高频头。
  - 5) 拆除管颈管、切割防爆带、清理 CRT 后进行屏锥分离。
  - 6) 收集荧光粉。
  - 7) 废铁打包减容,塑料破碎减容。
  - 8) 所有拆解物料入库待销售。

其中, CRT 切割处理工艺如下: 将显像管放置在切割机上→将电热线定位 在锥管和屏玻璃焊接处(下方约 3mm) 拉紧; 调整切割电压与加热时间,启动开 关→将分割完成的锥管玻璃取出,如有未完成分离时,用工具轻敲锥管加热端四 周,锥玻璃即可以取出。

屏玻璃荧光粉吸取工艺如下: 将已切割完成的显像管上的锥玻璃取出敲碎放置专用吨袋内→用一字形起子在面板两侧将荫罩挖起取出→用吸尘器将附着在 屏玻璃上的荧光粉吸干净→吸干净后的屏玻璃敲碎放置在专用吨袋内。

电脑主机箱拆解工艺如下: 废机箱投入→ 拆掉各板卡的电缆→ 光驱、软驱、

硬盘、其它板卡等器件→主板取出→主板上的内存、CPU 、散热风扇、散热片等取出→电源盒取出。

(二)废液晶电视机/废液晶显示器:

#### (1) 工艺流程图

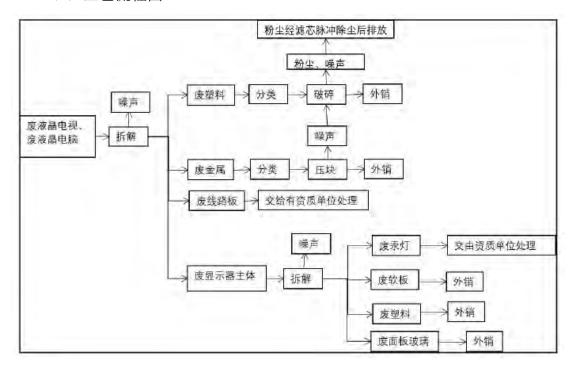



图 3.3-2 废液晶电视机/废液晶显示器处理工艺流程及产污环节图

#### (2) 工艺流程简述

废液晶电视机、液晶电脑所含金属、塑料等占 90%以上,而且都可以回收利用。液晶电视机、电脑主机主要由线路板、外壳、光驱、软驱、硬盘等组成;液晶显示器主要由液晶屏、印刷电路板、外壳等组成。

经流水线人工初步拆解、分类可直接得到金属、塑料、线路板、显示器主体。 金属和塑料分别经过分类、压块和破碎等简单处理后可以出售或转移利用:显示 器主体进一步人工拆解可得到软板、塑料、汞灯、面板玻璃,拆解得到废塑料经 过破碎后可销售给相关塑料加工厂。

汞灯交由有资质单位处理;线路板交由有资质单位进一步拆解。

由于废旧液晶电视机、电脑、监控器、显示器的结构相似,拆解原理相同, 所以在实际生产中全部交由液晶电视拆解线进行拆解。

162 种类型电视及电脑产污环节:拆解汞灯时,操作不当造成汞灯破碎容易造成空气污染,为了防止液晶拆解过程中有灯管破裂,设计了特种的装置,采用

下沉式与侧式吸风负压装置,有效收集含汞气体,含汞的气体通过载流活性炭进行吸附。

废旧电视机、电脑等产品本身带有一些积尘,拆解过程中会产生少量扬尘, CRT 在加热切割过程中也会产生铅及其化合物,在负压的状态下,通过脉冲滤 芯除尘器收集;金属压块过程产生噪声;塑料破碎在车间进行,破碎过程主要 产生噪声。拆解过程会产生废线路板、汞灯等危险废物,交由有资质单位处置。

# 3.3.1.2 废旧冰箱工艺流程

# (1) 工艺流程图

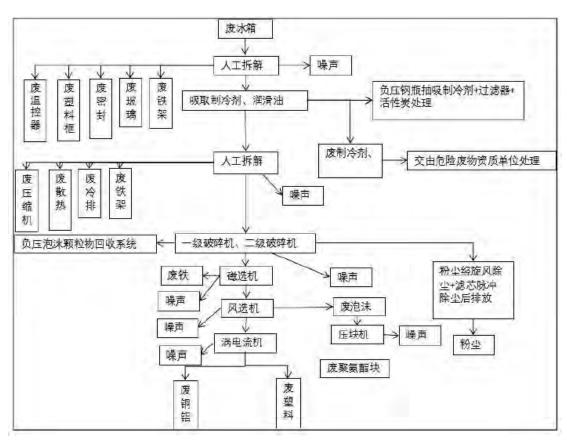



图 3.3-3 废旧冰箱处理工艺流程及产污环节图

### (2) 工艺流程简述

① 在对废电冰箱、冷柜机拆解处理之前先对压缩机里的制冷剂维持负压状态真空抽取回收,制冷剂储存于专用钢瓶中,氟利昂类制冷剂委托给当地省级生态环境主管部门制定的单位进行回收、再生,其中线路板需进一步拆解,交由有资质单位深度拆解;然后拆解部分五金、塑料;电冰箱含隔热层壳体在负压情况下整体破碎,经过2次破碎后,铁通过磁机磁选出来,塑料通过风选出来,铜、

铝经过涡电流分选出;在壳体破碎过程中,通过管道负压收集发泡剂中有机废气被活性炭吸附,当活性炭吸附饱和后需要重新更换,换下来的活性炭按照危险废物交由资质的单位进行处理。泡沫在冰箱壳体破碎过程中变成微小颗粒物,通过负压吸附装置收集,收集的泡沫减容后装入袋中,送垃圾发电厂处理或送垃圾填埋场填埋。

拆解所得铜、铝、钢铁、塑料等占90%以上,均可回收利用。

产污环节:冰箱壳体破碎过程中产生粉尘,非甲烷总烃易污染空气;润滑油在回收过程中可能由于泄露造成污染。此外,破碎过程中会产生粉尘、噪声,压块过程会产生噪声。

### 3.3.1.3 废旧空调工艺流程

### (1) 工艺流程图

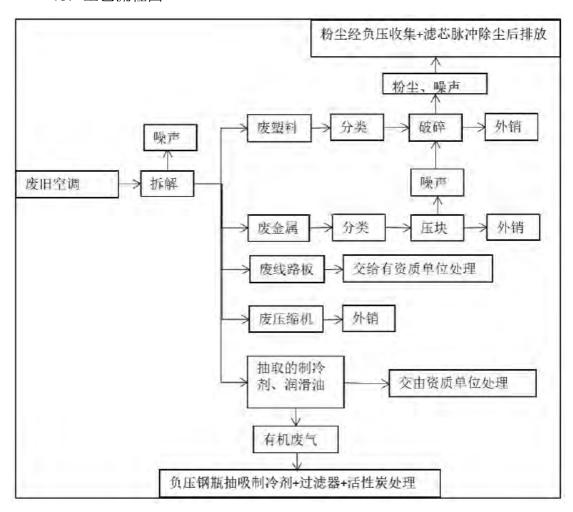



图 3.3-4 废旧空调处理工艺流程及产污环节图

### (2) 工艺流程简述

在拆解之前先把空调压缩机里面的制冷剂通过专用设备进行回收,回收的制冷剂储存于特制钢瓶中,委托给当地省级环境保护主管部门制定的单位进行回收、再生;然后剩下部分通过流水线及机械拆解将塑料、金属、线路板等分别拆解,拆出的塑料、金属经分类、破碎或压块后销售给相关企业,线路板委托有资质单位继续深加工处理。

## 3.3.1.4 废旧洗衣机处理线

## (1) 工艺流程图

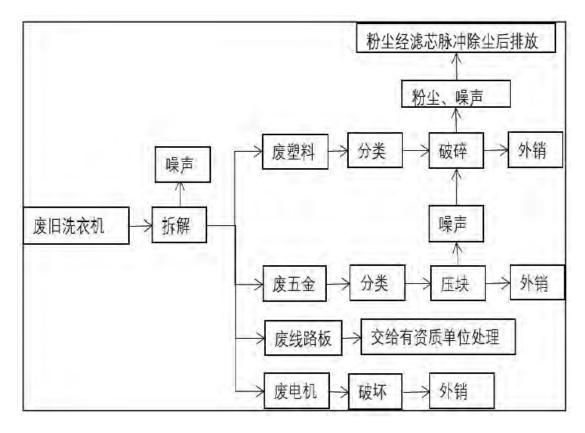



图 3.3-5 废旧洗衣机处理工艺流程及产污环节图

### (2) 工艺流程简述

- ① 将废旧洗衣机运至处理车间指定洗衣机待拆区域进行卸货。检查洗衣机 主要零部件是否完整,缺失。
  - ② 用叉车将待拆解的废旧洗衣机运至拆解线上料端,人工搬上输送带。
- ③ 拆除外壳,拆除分离机体小配件,拆除主机体。先后采用气动风批等工具拆卸洗衣机的面板、旋钮开关、底部配重。将拆解下来线路板、开关和定时器进行回收,分别放入指定的回收包内,线路板专业公司做进一步处理。用剪刀将

洗衣机外壳和内筒连接线剪断。分离洗衣机铁皮外壳, 打包处理。使用电动扳手进一步拆解洗衣机内筒底部罩壳内的电机,并采用单柱液压机将洗衣机内筒离合器及波轮压出,分选出纯 PP 塑料筒壁及不锈钢内筒胆。

- ④ 将废铁打包减容,塑料破碎减容。
- ⑤ 把收集的浓盐水稀释处理后达标排放。
- ⑥ 所有拆解物料入库待销售。

# 3.3.1.5 机动车回收拆解

依据国家相关法律法规及有关规定对报废机动车进行接收或收购、登记、贮存、并发放回收证明的过程。并对报废机动车进行无害化处理、拆除主要总成和可再利用的零部件,对车体和结构件等进行拆分或压扁的过程。报废汽车预处理完毕之后,应完成以下拆解:

拆下油箱;拆除机油滤清器;拆除玻璃;拆除包含有毒物质的部件(含有铅、汞、镉及六价铬的部件);拆除催化转化器及消声器、转向锁总成、停车装置、倒车雷达及电子控制模块;拆除车轮并拆下轮胎;拆除能有效回收的含金属铜、铝、镁的部件;拆除能有效回收的大型塑料件(保险杠、仪表板、液体容器等);拆除橡胶制品部件;拆解有关总成和其他零部件,并符合相关法规要求。对于报废的大型客、货车及其他营运车辆,企业将按照国家有关规定在公安机关交通管理部门的监督下解体。

### (一) 小型机动车、新能源机动车、大型机动车拆解

企业根据《报废汽车回收拆解企业技术规范》和《报废机动车拆解环境保护 技术规范》的要求进行作业,作业程序主要包括报废汽车进厂检查和登记、信息 管理、安全管理、环保管理、拆解预处理、临时存储、主体拆解、拆解物品分类 收集和贮存,不涉及各项拆除零部件的深度拆解和各类危险废物的处置。

### (1) 工艺流程图

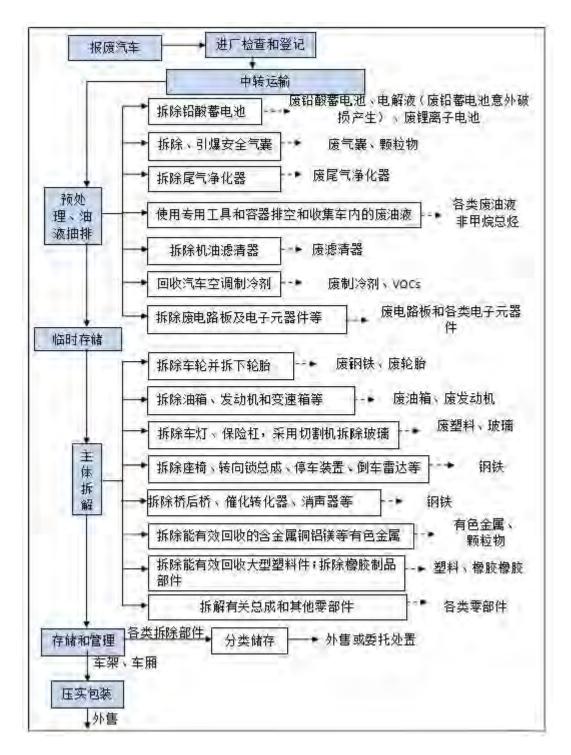



图 3.3-6 机动车拆解工艺流程及产污环节图

- (2) 工艺流程简述
- ① 检查和登记
- ② 待拆解的报废汽车进厂前, 需满足以下条件:
- ③ 公司拟拆解的报废汽车均来自茂名市。
- ④ 公司拟拆解的报废汽车为燃油型的汽车、新能源汽车、摩托车、农作耕

用车。对报废电动汽车,应检查动力蓄电池和驱动电机等部件的密封和破损情况。 对于出现动力蓄电池破损、电极头和线束裸露等存在漏电风险的,应采取适当的 方式进行绝缘处理。

- ⑤ 委托拆解方应在入厂前做好报废汽车的粉尘、油渍等的清理,存在废油 液或蓄电池内废液渗漏的,或发动机、油箱等总成部件存在破损等情况可能导致 渗漏的,须采取封堵防漏等相应的应急处理措施消除渗漏或渗漏风险后方可入厂。
- ⑥ 委托拆解方应在运输前通知公司,并做好运输车辆的遮盖。仅进行已入厂报废车辆的拆解。

报废车辆进场后,应进行如下操作:

- ① 车辆进场后,在到达预处理工位之前,再次检查报废汽车发动机、散热器、变速器、差速器、油箱等总成部件的密封、破损情况。有渗液现象的报废汽车应立即进入拆解车间进行拆解。采取与报废汽车托运前的措施对漏油处进行封堵防漏。车辆到达预处理工位后,工位下配置有接油盒,可把漏油接住。
- ② 对报废汽车进行登记注册并拍照,将其主要信息录入电脑数据库并在车身醒目位置贴上显示信息的标签。主要信息包括:报废汽车车主(单位或个人)名称、证件号码、牌照号码、车型、品牌型号、车身颜色、重量、发动机号、车辆识别代号(或车架号)、出厂年份、接收或收购日期。
- ③ 对于新能源电动汽车拆解应按照国家有关规定要求,将报废电动汽车的车辆识别代码、动力蓄电池编码、流向等信息录入"新能源汽车国家检测与动力蓄电池回收利用溯源综合管理平台"。对于因租赁等原因导致动力蓄电池被提前从电动汽车上拆卸回收的情况,应检查保存机动车所有人提供的租赁运营等机构出具的回收证明材料。电动汽车拆解作业人员在带电作业过程中应进行安全防护,穿戴好绝缘工作服等必要的安全防护装备。使用的作业工具应是绝缘的或经绝缘处理的。作业时,应有专职监督人员实时监护。厂内转移报废电动汽车和动力蓄电池应进行固定,防止碰撞、跌落。
- ④ 将报废汽车的机动车登记证书、号牌、行驶证交公安机关交通管理部门办理注销登记。
  - ⑤ 向报废汽车车主发放《报废汽车回收证明》及有关注销书面材料。
  - (3) 报废汽车临时贮存

报废汽车临时存储要求如下:

- ① 应避免侧放、倒放。电动汽车在动力蓄电池未拆卸前不应叠放。电动汽车在动力蓄电池未拆卸前应单独贮存,并采取防火、防水、绝缘、隔热等安全保障措施。电动汽车中的事故车以及发生动力蓄电池破损的车辆应隔离贮存。
- ② 报废汽车停放区车辆一般单个停放,不堆积。如需要叠放,应使上下车辆的重心尽量重合,以防掉落,且叠放时外侧高度不超过 3m,内侧高度不超过 4.5m;对大型车辆应单层平置。如果为框架结构,要考虑其承重安全性,做到结构合理,可靠性好,并且能够合理装卸,而对存储高度没有限制。
  - ③ 应与其他废弃物分开存储。
- ④ 接受或收购报废汽车后。对有渗液现象的报废汽车应立即进入拆解车间进行拆解。
- ⑤ 企业报废车辆的预处理、拆解、精拆位于车间室内,室内场地面进行硬化防渗漏。厂外托运报废车辆时,委托承运方或自有运输车辆在托运报废车辆前必须做好车辆初检、防油防漏、防尘防雨工作,如发现问题或安全隐患必须提前采取措施,妥善处置后方可托运及进厂。报废汽车检查和登记后进入整车堆放场存放。贮存区地面采取水泥硬化处理,拟增设遮雨棚,四周设置收集沟。

#### (4) 拆解预处理

- ① 企业对报废汽车不进行清洗,直接进入报废汽车预处理车间进行预处理工作。包括铅酸蓄电池拆卸、新能源汽车的锂电池拆卸、制冷剂抽取、油液抽取和放空、安全气囊拆除。企业拆卸下来的铅酸蓄电池以及油液等危险拆解物质先对照相应行业的产品标准进行鉴别,达到该行业产品标准的拆解物质可作为产品出售再次利用,达不到产品标准的拆解物质应委托资质单位安全处置,拆解产生的制冷剂应委托给当地省级生态环境主管部门制定的单位进行回收、再生。新能源汽车的锂电池按一般固体废物交由有处理能力单位处理处置。
- ② 项目不对铅酸蓄电池、油液等危险废物进一步处理,而是暂存于危险废物暂存间,再交由有资质的固体废物(危险废物)处置单位进行安全处置。危废处置单位每月对项目产生的危废进行 1次运转,运转时会把上月带走的钢桶或钢瓶带回进行替换。
  - ③ 主要作业内容如下:

1) 拆除铅酸电池、拆除锂离子电池:

铅酸电池拆除,首先要将蓄电池的固定支架及连接电源线拆卸,将蓄电池取出存放在专用收集箱内,不再进一步拆解,蓄电池在收集箱内不得倒置及侧放,避免硫酸泄漏;蓄电池暂存于危险废物存放区,定期交由具有相应危废处置资质的单位处置。若拆解前蓄电池已破损或拆解过程中蓄电池破损,致使电解液等泄露,则先将电解液收集至耐酸容器内,收集的液体委托有资质单位进行处置。

锂离子电池拆除,拆解电动汽车的企业,应接受汽车生产企业的技术指导,根据汽车生产企业提供的拆解信息或手册制定拆解作业程序或作业指导书,配备相应安全技术人员。应将从报废电动汽车上拆卸下来的动力蓄电池交售给电动汽车生产企业建立的动力蓄电池回收服务网点或从事废旧动力蓄电池综合利用的企业处理,不应拆解。拆卸后的锂离子电池放于电池暂存间,存放间做好并采取防火、防水、防渗漏、绝缘、隔热等安全保障措施。拆除的锂离子电池交由一般固体废物处理能力单位处理处置。

2)抽取车辆燃油分类存放,并排出残留的各种废油液(汽油、柴油、润滑油、冷却液、制动液等)。

废油、废液的抽取是由油液抽排系统来完成的,废油液抽排系统分别抽取汽油、柴油、润滑油、冷却液等旧油,将抽油管分别插入所要抽取的油路中,抽取废油液并分别储藏于相应的密闭钢桶中,各容器分类独立储存于危废品库中,不混合存储,最终委托有资质单位处理,废油、废液抽取完毕及时拧紧油箱等盖子防止残留的少量废油、废液滴落等。抽取废油液过程中会有少量非甲烷总烃废气挥发。抽取废油液的油液抽排系统配套油液回收装置,进一步避免油气的挥发而引起环境污染。

3)用专用设备收集汽车制冷剂,设备用软管进行密封抽取,收集设备接入 瞬间会产生制冷剂泄漏废气。存储空调制冷剂的钢瓶中气体只进不出。

拆解车间配备专用的制冷剂回收机,适用于 R12 和 R134a 等多种制冷剂的 回收,操作时将回收钳卡在空调压缩机管道上刺穿管道,根据报废汽车所用空调制冷剂的不同种类,将制冷剂回收至相应的专用容器内,委托给当地省级生态环境主管部门制定的单位进行回收、再生。

4) 拆除发动机、变速箱、油箱、燃料罐。在拆卸汽车发动机、变速箱的同

时拆卸油路管线,采用扳手拆卸的方式将油路管线拆卸下来,该拆解工位底部是 一个具有废油液收集功能的栅格金属平台,可收集汽车拆解过程中泄漏的废油液, 收集的废油液贮存至对应的油液贮存罐。

不能回用的发动机送至发动机拆解区,通过人工拧开发动机上的螺丝,逐层拆解成气缸盖、气缸垫、气缸体、油底壳等铝部件,以及气缸盖罩、主轴承盖、曲轴、飞轮、活塞连杆组等铁部件,作为废旧金属分别出售,并不再进一步细拆。拆解发动机过程中设置一个托盘用来集中收集拆解过程中的跑冒滴漏,防止污染地面。

5) 拆除安全气囊,拆除下的安全气囊整体送至安全气囊引爆装置处理,引爆装置通过装置内部撞针的对气囊的撞击,使气囊内部发生化学反应引起爆破,爆破后气囊成碎状,回收气囊外部的金属铝件,其余不可利用物作为固体废物清运。

## 安全气囊相关介绍:

安全气囊内主要化学成分包括:叠氮化钠、硝酸钾和二氧化硅,引爆后排放气体为氮气,不具有环境风险,引爆后的气囊可作为一般尼龙材料外售。根据《报废机动车回收拆解企业技术规范》(GB22128-2019)要求:报废汽车拆解企业必须具备安全气囊直接引爆装置或者拆除、存储、引爆装置。因此,安全气囊引爆车间不需要另行选址,设置于拆解企业内可行。企业在场地内设置一个单独的封闭车间,且采用箱式、密闭的专用设备进行安全气囊的引爆,从报废汽车上拆下的气囊置于引爆容器内,使用电子引爆器对气囊进行引爆,引爆容器为密闭装置,可起到阻隔噪声的作用,且可有效保证车间内操作人员的安全。

安全气囊引爆工艺说明:项目采用将安全气囊组件拆除后再引爆的方式,典型的气囊系统包括两个组成部分:探测碰撞点火装置(或称传感器),气体发生器的气囊(或称气袋)。安全气囊爆破时会以大约 300km/h 的速度弹出,而由此所产生的撞击力约有 180 公斤,产生的灼热气体会灼伤会人员。本套爆破装置采用双层箱体结构并预留充足的空间有效解决爆破时所产生的撞击,装置配备双电源保护开关,在未关门的前提下二级电源不会接通,爆破采用遥控器控制。

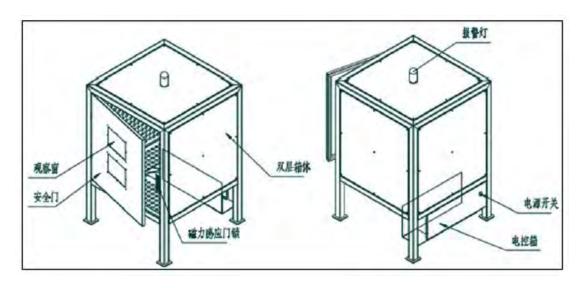



图 3.3-7 安全气囊引爆过程图

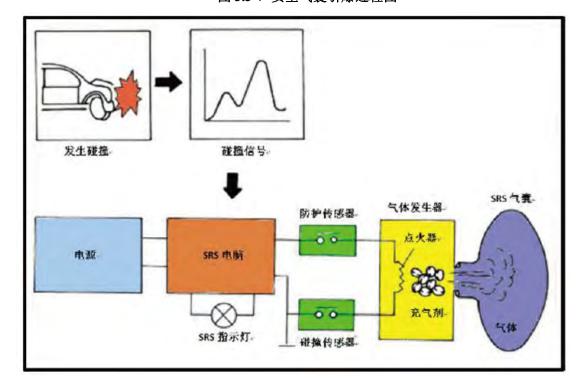



图 3.3-8 安全气囊引爆过程图

# (5) 主体拆解

报废汽车预处理完毕之后,在拆解车间内完成以下拆解作业。项目配备了自动翻转机,能将报废汽车作90°翻转,可提高拆解效率:

- ① 拆除车轮并拆下轮胎;
- ② 拆除车灯、保险杠,采用玻璃拆除工具拆除玻璃;
- ③ 拆除座椅、内饰、转向锁总成、停车装置、倒车雷达;
- ④ 拆除前后桥、催化转化器、消声器等:

- ⑤ 拆除能有效回收的含金属铜、铝、镁等有色金属的部件:
- ⑥ 拆除能有效回收的大型塑料件(保险杠、仪表板、液体容器等);
- ⑦ 拆除橡胶制品部件:
- ⑧ 拆解汽车"五大总成"有关部件和其他零部件,并符合相关法规要求。
- (6) 存储和管理

## ① 分类

从报废汽车上拆下的零件或材料应首先考虑再使用和再利用。在将拆解车辆送往压实区或进一步处理时,分拣全部可再利用和可再循环使用的零部件及材料,主要包括:散热器、铝轮辋、发动机缸体、缸盖、螺丝、轴承等有色金属部件,车门、车身、车架等钢材部件、前后侧窗玻璃和天窗玻璃、轮胎、密封条、燃料管等橡胶部件、大的塑料件(如保险杠、轮毂罩、散热器格栅)等。铅酸蓄电池、废油液、废电路板及电子电器件、废尾气净化器等属于危险废物,应委托具有资质的单位进行安全回收、处置。将制冷剂回收至相应的专用容器内,委托给当地省级环境保护主管部门制定的单位进行回收、再生。

## ② 压实

经拆解完成后的车身、底盘等,采用多功能拆解机和大力剪进行解体,然后 由起重机吊至压实打包机上方,放入压实打包机进行压实打包,之后作为钢铁原 料外售。

- ③ 存储和管理要求如下:
- 1)应使用各种专用密闭容器存储废液,防止废液挥发,并交给有资质的单位进行回收处理。
  - 2) 拆下的可再利用零部件应在室内存储。
- 3)对存储的各种零部件、材料、废弃物的容器进行标识,并贴上"可回用零部件"的标识,避免混合、混放。
- 4)对拆解后的所有的零部件、材料、废弃物进行分类存储和标识,含有害物质的部件应标明有害物质的种类。
- 5)容器和装置要防漏和防止洒溅,未引爆安全气囊的存储装置应防爆,并对其进行日常性检查。
  - 6) 拆解后废弃物的存储应严格按照 GB18599 和 GB18597 要求执行。

- 7) 各种废弃物的存储时间一般不超过一年。
- 8) 危险废物应交给符合国家相关标准的废物处理单位处理,不得焚烧、丢弃。
  - 9) 危险废物应交由具有相应资质的单位进行安全处置。 企业生产工艺只是汽车拆解,不涉及汽车零部件的进一步处置。
  - (7) 拆解的一般技术要求
- ① 具有电动汽车拆解业务的企业应具有动力蓄电池贮存管理人员及 2 人以上持电工特种作业操作证人员。动力蓄电池贮存管理人员应具有动力蓄电池防火、防泄漏、防短路等相关专业知识。拆解人员应在汽车生产企业提供的拆解信息或手册的指导下进行拆解。
- ② 拆解报废汽车零部件时,应当使用合适的专用工具,尽可能保证零部件可再利用性以及材料可回收利用性。
- ③ 应按照汽车生产企业所提供的拆解信息或拆解手册进行合理拆解,没有拆解手册的,参照同类其他车辆的规定拆解。
- ④ 存留在报废汽车中的各种废液应抽空并分类回收,接收或收购报废机动车后应尽快充分排空里面的燃油。
  - ⑤ 不同类型的制冷剂应分别回收。
- ⑥ 各种零部件和材料都应以恰当的方式拆除和隔离。拆解时应避免损伤或污染再利用零件和可回收材料。
- ⑦ 拆解的发动机、前后桥、变速器、方向机、车架"五大总成"不能回用的 应当作为废钢铁,交售给钢铁企业作为冶炼原料。
  - ⑧ 可再利用的零部件存入仓库。
- ⑨ 报废机动车拆解、破碎企业内的道路应采取硬化措施,并确保在其运营期间无破损。
  - ⑩ 报废机动车在进行拆解作业之前不得侧放、倒放。
  - ①禁止露天拆解报废机动车。
- ⑩禁止采用露天焚烧或简易焚烧的方式处理报废机动车拆解、破碎过程中产 生的废电线电缆、废轮胎和其他废物。
  - ③拆解得到的可回收利用的零部件、再生材料与不可回收利用的废物应按种

类分别收集在不同的专用容器或固定区域,并设立明显的区分标识。

(1)拆解得到的轮胎和塑料部件的贮存区域应具消防设施,并尽量避免大量堆放。

# (二) 摩托车拆解

# (1) 工艺流程图

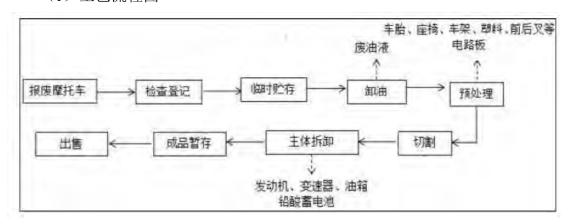



图 3.3-9 机动摩托车拆解工艺流程图

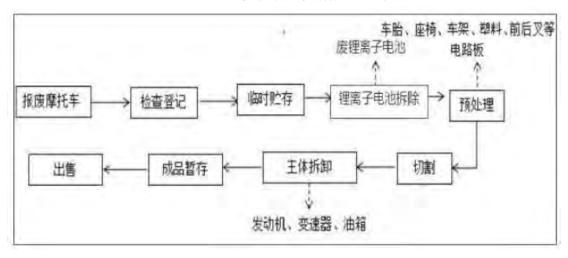



图 3.3-10 电动摩托车拆解工艺图

### (2) 工艺流程

# ① 检查登记

对于机动摩托车,检查报废摩托车有无漏油等现象,登记相关型号,若有漏油现象立即进入拆解车间拆解。对于电动摩托车应检查动力蓄电池和驱动电机等部件的密封和破损情况。对于出现动力蓄电池破损、电极头和线束裸露等存在漏电风险的,应采取适当的方式进行绝缘处理。

## ② 临时贮存

经登记摩托车置于机动车贮存场所,等待拆解。

## ③ 拆含油零件/拆锂离子电池零件

对于机动摩托车,利用抽油机抽取油箱里面的汽油,然后拆除油箱及其他含油零件,其过程中会产生少量无组织非甲烷总烃。

对于电动摩托车,按照电动汽车要求拆除锂离子电池等。

### ④ 拆除零部件

拆除其他零部件。其过程产生各种固体废物。

## ⑤ 切割

对可利用成分进行切割压缩,然后运至钢铁堆场,含油零件不可堆放于露天 堆场中。

## ⑥ 各材料进库暂存。

可回收利用材料出售,一般固废交由一般固废处理公司处置,危险废物入危 废仓库暂存,定期交由有资质单位处理。

## (三)破碎工序生产线

## (1) 工艺流程图

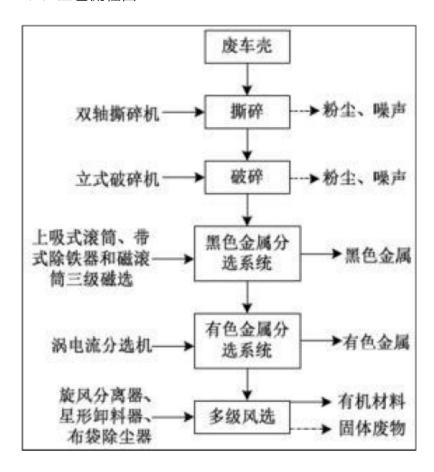



图 3.3-11 破碎工序工艺流程及产污环节图

## (2) 工艺流程

破碎工序流程简述如下:报废车壳首先经双轴撕碎机把车身撕成了一段段的 长条,然后进入立式破碎机粉碎解离,后经黑色金属分选系统、有色金属分选系 统、多级风选系统分别分选处黑色金属、有色金属、有机材料和固体废物等。

### 3.3.1.6 废铅蓄电池回收

### (1) 工艺流程图

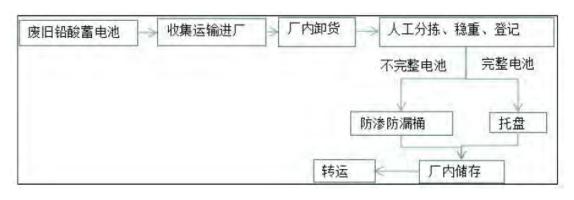



图 3.3-12 废铅蓄电池回收工艺流程及产污环节图

### (2) 工艺流程

### ① 收集运输进厂

企业主要收集茂名市及周边地区电池销售点、电动车维修店及汽车修理厂等产生的机动车铅酸蓄电池、电瓶车铅酸蓄电池、电力设施中的铅酸蓄电池等。根据《废铅蓄电池处理污染控制技术规范》(HJ 519-2020),从事废铅蓄电池收集、贮存的企业,应依法获得危险废物经营许可证;禁止无经营许可证或者不按照经营许可证规定从事废铅蓄电池收集、贮存经营活动。按《废铅蓄电池处理污染控制技术规范》(HJ 519-2020)要求依法获得危险废物经营许可证。收集过程中,先检查废铅蓄电池的外观并在蓄电池上张贴标签,注明来源、规格、完好情况等信息,完好的蓄电池直接放在托盘内装车,破损的单独放在带盖 PVC 桶内再装车,防止电解液泄露。废铅蓄电池运输工作要满足防雨、防渗、防逸撒要求。未破损的废铅蓄电池危险废物代码 900-052-31 运输工具满足防雨、防渗、防逸撒要求,不按危险废物进行运输,对于破损的废铅蓄电池的收集应在取得危险废物经营许可证后采用专用的危险废物运输车运输。

由于废铅蓄电池产生点较多,回收过程没有固定线路,因此不做固定路线要求。但运输途中应避开经过下列区域: 医院、学校、居民区等人口密集区,饮用

水源保护区、自然保护区等环境敏感区。

### ② 厂内卸货

运输至厂区后,车辆进入室内装卸区,用叉车卸货,同时人工进行分类、称重登记、包装。完好的废铅蓄电池采用塑料薄膜包装后放入金属回收箱,破损铅酸蓄电池放入带盖的 PVC 桶内,然后由叉车运至储存区暂存。卸货后车辆换装空的托盘和密闭器有序离厂。地面应定期拖干净,无遗漏废电解液。

# ③ 厂内储存

根据《废铅蓄电池处理污染控制技术规范》(HJ 519-2020),基于废铅蓄电池收集过程的特殊性及其环境风险,分为收集网点暂存和集中转运点贮存两种方式。企业属于集中转运点贮存,集中转运点贮存时间最长不超过1年,贮存规模应小于贮存场所的设计容量。

企业废铅蓄电池分 2 个区存放,包括 1 个 500m² 免维护废铅蓄电池存放区 (完整区),1 个 30m² 破损废铅蓄电池存放区(破损区)。免维护废铅蓄电池存放区(完整区)设耐酸碱的容器存放,完好废铅蓄电池摆放在耐酸的专用容器内,每个容器约 0.6 立方米,可放置 90-100 个废铅蓄电池,分 3 层堆放;破损废铅蓄电池存放区(破损区)设带盖 PVC 桶 10 个,每个 PVC 桶放置 10 个破损电池。按照集中转运点贮存时间最长不超过 1 年,贮存规模应小于贮存场所的设计容量要求,结合企业废铅蓄电池暂存车间的

设计容量为 580m³,储存区最大储存量 1666.7t,满足中转量情况下,中转频次约一月一次。

废铅蓄电池集中转运点储存区应符合以下要求:

- 1)应防雨,必须远离其他水源和热源。
- 2) 面积不少于 30m<sup>2</sup>, 有硬化地面和必要的防渗措施。
- 3) 应设有截流槽、导流沟、临时应急池和废液收集系统。
- 4)应配备通讯设备、计量设备、照明设施、视频监控设施。
- 5) 应设立警示标志,只允许收集废铅蓄电池的专门人员进入。应有排风换气系统,保证良好通风。
- 6)应配备耐腐蚀、不易破损变形的专用容器,用于单独分区存放开口式废 铅蓄电池和破损的密闭式免维护废铅蓄电池。禁止将废铅蓄电池堆放在露天场地,

避免废铅蓄电池遭受雨淋水浸。

## ④ 转运

厂内转移至下游接收单位的运输过程委托具有专业危险品运输营运资质的单位或车辆完成。储存区存量满足运输公司发货车辆额定载重后(一般 10-30),立即装车转运,并做好登记工作,一般一个月转移一次。在运输前采用塑料薄膜进行人工包装,且破损电池中泄漏的电解液送往有资质单位处理,不擅自倾倒、丢弃废铅蓄电池中的电解液,时用叉车直接连同托盘或密闭容器并装车,降低搬运过程中使电池受损的可能。同时,优先安排破电池装车,减少贮区废气影响。企业废铅蓄电池的接收单位为有处理资质的专业公司,不得违规转移。

⑤ 信息管理系统。企业建立废铅蓄电池收集处理数据信息管理系统,如实记录收集、贮存、转移废铅蓄电池的重量、来源、去向等信息,并实现与全国固体废物管理信息系统的数据对接。相关材料定期报备市生态环境部门。

# 3.3.2 产排污及污染防治措施

## 3.3.2.1 废水主要污染物产排情况及处理措施

企业员工生活污水经过三级化粪池预处理接入市政污水管网,初期雨水由初期雨水收集池收集,与地面冲洗废水经五级隔油池预处理设施处理后接入市政污水管网,其中初期雨水收集池和五级隔油池埋深约为4m,根据环评核算废水量以及生活污水量,其综合废水处理能力可满足企业要求,同时,出水监测结果茂名市茂南区污水处理厂进水水质要求,同时满足广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准的较严值要求。

废水处理工艺见图 3.3-13。

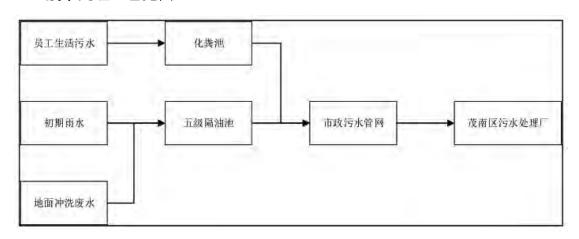



图 3.3-13 垃圾渗滤液处理系统工艺流程图

### 3.3.2.2 废气主要污染物产排情况及处理措施

1#拆解车间 CRT 电视及 CRT 电脑拆解线及 1#拆解车间液晶电视及电脑拆解线产生的粉尘废气通过负压收集+旋风除尘+滤芯脉冲除尘装置+活性炭吸附+15m 排气筒处理后排放,排气筒编号为 DA002。

1#拆解车间废洗衣机拆解线粉尘废气通过负压收集+滤芯脉冲除尘+15m 排气筒处理后排放,排气筒编号为 DA003。

1#拆解车间废空调拆解线粉尘废气通过负压收集+滤芯脉冲除尘+15m 排气 筒处理后排放,制冷剂有机废气通过负压钢瓶抽吸+过滤器+活性炭+15m 排气筒 处理后排放,该生产线颗粒物与有机废气共用一条排气筒,排气筒编号为 DAO04。

2#拆解车间废冰箱自动拆解线粉尘废气通过旋风除尘+滤芯脉冲除尘装置

+15m 排气筒处理后排放,制冷剂有机废气通过负压钢瓶抽吸+过滤器+活性炭 +15m 排气筒处理后排放,该生产线颗粒物与有机废气共用一条排气筒,排气筒 编号为 DA005。

危险废物暂存间(废铅蓄电池储存区)废气通过碱液喷淋+活性炭吸附措施 后通过 15m 排气筒排放,排气筒编号记为 DA007。经过上述处理后废气能达到 广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准及无组织排 放限值,由 15m 高排气筒排放。

项目厨房油烟采用静电油烟装置对其进行处理,厨房油烟经处理达到《饮食业油烟排放标准》(试行)(GB18483-2001)后引至顶楼排放,不会对周围环境造成明显影响。

根据环评核算废气产生量,目前企业的废气处理设施及其处理能力可满足企业要求。

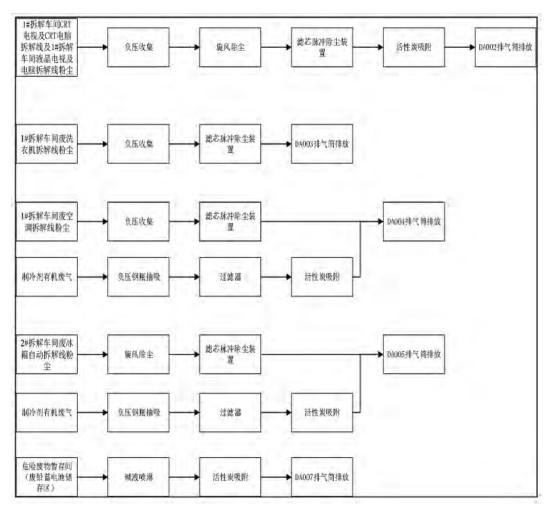



图 3.3-13 废气处理工艺流程图

### 3.3.2.3 固体废弃物处理措施

## (1) 生活垃圾

收集后交由环卫部门统一收集处理。

## (2) 一般废物

机动车及家电拆解过程中产生的一般固废,铜、铝、钢铁、其他金属、塑料、橡胶、玻璃等可以出售综合利用;压缩机、电动机、电子废料、混合废料、电源线、锂离子电池等完好的可以出售,不能利用的交由有处理能力单位进行处理。

### (3) 危险废物

废旧电器里拆解下来的含铅锥玻璃、润滑油、荧光粉、线路板等属于危险废物。报废旧机动车拆解下来的铅酸蓄电池和镉镍电池,尾气净化催化剂、电容器(内含有的多氯联苯)、废油液(含润滑剂、液压油、制动液、防冻剂等),拆解过程产生的含油抹布,这些都属于危险废物,需交由有资质单位处理。另外,拆解产生的制冷剂废气先经过负压钢瓶收集冷凝再经过过滤器过滤油气再由活性炭吸附装置吸附处理。

危险废物处置单位如下:

- ① 制冷剂交由天津澳宏环保材料有限公司处理;
- ② 含矿物油废物(液)、废机油、废汽油、柴油交由湛江市鸿达石化有限公司处理;
  - ③ 荧光粉交由陕西安信显像管循环处理有限公司处理;
  - ④ CRT 含铅锥玻璃交由汨罗万容固体废物处理有限公司处理:
  - ⑤ 含铅玻璃交由广东新生环保科技股份有限公司处理;
  - ⑥ 废矿物油和废机油交由佛山市格能环保科技有限公司处理;
  - ⑦ 废线路板交由东莞市伟基再生资源集中处理中心有限公司处理;
  - ⑧ 废电路板交由大治有色金属有限责任公司处理。

固体废物排放情况,见下表。

表 3.3-1 固体废物排放情况汇总表

| 固废名称           | 类型            | 代码         | 产生量(t) | 产生来源         | 成分      | 形态 | 毒性   | 去向                     |
|----------------|---------------|------------|--------|--------------|---------|----|------|------------------------|
| 生活垃圾           | /             | /          | 24.75  | 办公、生活        | /       | /  | /    | 环卫部门清<br>运             |
| 有色金属(铜、铝、其他金属) |               | /          | 14479  | 各拆解工序        | /       | /  | /    |                        |
| 塑料             |               | /          | 43984  | 各拆解工序        | /       | /  | /    | 出售                     |
| 钢铁             |               | /          | 149314 | 各拆解工序        | /       | /  | /    |                        |
| 玻璃             |               | /          | 9810   | 各拆解工序        | /       | /  | /    |                        |
| 液晶显示屏 (含液晶)    |               | /          | 216    | 液晶电视电脑 拆解    | /       | /  | /    |                        |
| 压缩机            |               | /          | 14302  | 电子设备拆解       | /       | /  | /    |                        |
| 电动机            | 加田床           | /          | 3544   | 电子设备拆解       | /       | /  | /    |                        |
| 电子废料           | 一般固废          | /          | 11508  | 各拆解工序        | /       | /  | /    | 出售或交由                  |
| 混合废料           |               | /          | 37886  | 各拆解工序        | /       | /  | /    | 一 处理能力单<br>一 位处理       |
| 聚酰胺泡沫          |               | /          | 4549   | 各拆解工序        | /       | /  | /    | 一                      |
| 电源线            |               | /          | 26     | 电子设备拆解       | /       | /  | /    |                        |
| 锂离子电池          |               | /          | 140    | 新能源机动车<br>拆解 | /       | /  | /    |                        |
| 制冷剂(氟利昂)       |               |            | 29     | 制冷剂收集        | R12 制冷剂 | 液体 | T, I | 委托有处置<br>资质的单位<br>回收利用 |
| 机油滤清器          | HW49 其他废<br>物 | 900-041-49 | 120    | 滤清器拆除        | 机油      | 固体 | Т    | 交由有资质                  |
| 尾气净化器          | HW50 废催化      | 900-049-50 | 10     | 尾气净化装置       | 铂族金属    | 固体 | Т    | 一 单位处置                 |

| 固废名称                   | 类型             | 代码                    | 产生量(t) | 产生来源           | 成分           | 形态 | 毒性   | 去向 |
|------------------------|----------------|-----------------------|--------|----------------|--------------|----|------|----|
|                        | 剂              |                       |        | 拆除             |              |    |      |    |
| 电解液(废铅<br>蓄电池破损产<br>生) | HW31 含铅废<br>物  | 900-052-31            | 30     | 铅酸蓄电池拆<br>除    | 硫酸           | 液体 | C、T  |    |
| 铅酸蓄电池                  | HW31 含铅废<br>物  | 900-052-31            | 20000  | 铅酸蓄电池拆<br>除    | 铅和硫酸         | 固体 | C、T  |    |
| 墨盒、硒、鼓                 | HW49 其他废<br>物  | 900-999-49            | 344    | 打印机拆解          | 含有油墨的固 废     | 固态 | Т    |    |
| 荧光灯、汞灯、<br>汞开关         | HW29 含汞废<br>物  | 900-023-29            | 43     | 液晶电视拆解         | 含汞           | 固态 | Т    |    |
| 荧光粉                    | HW49 其他废<br>物  | 900-044-49            | 2      | CRT 电视电脑<br>拆解 | 阴极射线         | 固态 | Т    |    |
| 废矿物油                   | HW08 废矿物油与含矿物油 | 900-199-08/900-214-08 | 516    | 燃料油及润滑油收集      | 柴油和汽油        | 液态 | T, I |    |
| 废矿物油泥                  | HW08 废矿物油与含矿物油 | 900-210-08            | 0.09   | 含油污水预处理        | 柴油和汽油        | 固态 | T, I |    |
| 电路板                    | HW49 其他废<br>物  | 900-045-49            | 3941   | 各类机电拆解         | 电路板          | 固态 | Т    |    |
| CRT 锥玻璃                | HW49 其他废<br>物  | 900-044-49            | 2117   | CRT 电视电脑<br>拆解 | 含铅废物         | 固态 | Т    |    |
| 废活性炭                   | HW49 其他废<br>物  | 900-039-49            | 24.336 | 有机废气处理<br>装置   | 含油有机物的<br>固废 | 固体 | T、In |    |
| 废过滤滤芯                  | HW49 其他废       | 900-041-49            | 0.035  | 隔油设施           | 含有矿物油的       | 固体 | T、In |    |

| 固废名称  | 类型 | 代码 | 产生量(t) | 产生来源 | 成分        | 形态 | 毒性   | 去向 |
|-------|----|----|--------|------|-----------|----|------|----|
|       | 物  |    |        |      | 固废        |    |      |    |
| 废含油抹布 |    |    | 1      | 工艺过程 | 含有矿物油的 固废 | 固体 | T、In |    |

# 3.4 各设施涉及的有毒有害物质分析

根据《重点监管单位土壤污染隐患排查指南(试行)》,有毒有害物质主要包括:①列入《中华人民共和国水污染防治法》规定的有毒有害水污染物名录的污染物(10 种:二氯甲烷、三氯甲烷、三氯乙烯、四氯乙烯、甲醛、镉及镉化合物、汞及汞化合物、六价铬化合物、铅及铅化合物、砷及砷化合物);②列入《中华人民共和国大气污染防治法》规定的有毒有害大气污染物名录的污染物(11 种:二氯甲烷、甲醛、三氯甲烷、三氯乙烯、四氯乙烯、乙醛、镉及其化合物、铬及其化合物、汞及其化合物、铅及其化合物、砷及其化合物);③《中华人民共和国固体废物污染环境防治法》规定的危险废物;④国家和地方建设用地土壤污染风险管控标准管控的污染物;⑤列入优先控制化学品名录内的物质(22 种:1,2,4-三氯苯、1,3-丁二烯、5-叔丁基-2,4,6-三硝基间二甲苯、N,N'二甲基-对苯二胺、短链氯化石蜡、二氯甲烷、镉及镉化合物、汞及汞化合物、甲醛、六价铬化合物、六氯代-1,3-环戊二烯、六溴环十二烷、萘、铅化合物、全氟辛基磺酸及其盐类和全氟辛基磺酰氟、壬基酚及壬基酚聚氧乙烯醚、三氯甲烷、三氯乙烯、砷及砷化合物、十溴二苯醚、四氯乙烯、乙醛);⑥其他根据国家法律法规有关规定应当纳入有毒有害物质管理的物质。

基于前文对原辅材料以及成品的梳理,企业产生危险废物包括 HW49 类其他废物(废机油滤清器、废电路板及电子元器件、废活性炭、废含油抹布)、HW50 类废催化剂(废尾气净化器)、HW08 类废矿物油与含矿物油废物(废燃料油、其他废油液)、HW31 类废铅酸蓄电池及其他废物(电解液)等类别。

通过对其工艺流程以及产排污情况分析,茂名天保再生资源发展有限公司仅涉及产品的拆解和破碎,对于本地块土壤及地下水产生污染的有毒有害物质主要来源于"四机一脑"拆解线拆解出来的各种固体废物和危险废物,以及报废机动车拆解线拆解得到的各种固体废物和危险废物。对其工艺以及产排污梳理后,需进行污染识别的物质如下:

①金属;②塑料;③制冷剂;④危险废物。

这些有毒有害物质可能在拆解过程中,通过扬撒、滴漏的方式污染本企业的 土壤以及地下水,也可能在场内转运和暂存过程中,通过长期滴、漏渗漏对土壤

和地下水产生污染。对有毒有害物质具体分析如下:

### 1) 金属

茂名天保再生资源发展有限公司在进行"四机一脑"以及报废机动车拆解时,都会产生大量的金属,其中根据多个产线废旧金属拆解情况汇总,拆解出的金属成分主要包含有钢铁、铜、铝以及少量其他金属。其中,钢铁和铝作为土壤常量元素,不属于对土壤污染物。而铜虽然毒性不强,但其作为《土壤环境质量建设用地土壤污染风险管控标准(试行)》GB 36600-2018 中土壤必测项目,遵从保守原则,将金属铜识别为企业的特征污染物,可能在拆解和堆存过程对于本地块产生影响。

## ②塑料

茂名天保再生资源发展有限公司各拆解工序都会产生大量塑料废品。生活中常见的塑料有以下几类:

### 1) 聚乙烯 (PE)

聚乙烯是塑料工业中产量最高的品种。PE 比较软,摸起来有蜡质感,与同等塑料相比质量比较轻,有一定的透明性,燃烧时火焰呈蓝色。主要用于薄膜、管材、塑料桶等领域。无毒,对人体无害。

#### 2) 聚丙烯 (PP)

聚丙烯是一种半结晶的热塑性塑料。具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀。日常用品中用于包装、玩具、脸盆、衣架、水杯等等;在工业界也有广泛的应用,是平常常见的高分子材料之一;澳大利亚的钱币也使用聚丙烯制作。与 PE 相似,无毒。

## 3) 聚对苯二甲酸乙二醇酯 (PET)

PET 是生活中常见的一种树脂,最常见的是用作饮料瓶、屏幕保护膜及其它透明保护膜、电气插座,另外也可纺成聚酯纤维,即涤纶。无毒、无味,卫生安全性好。

#### 4) 聚氯乙烯 (PVC)

多用于制造一些廉价的人造革,脚垫,下水管道等;由于其电气性能良好又有一定的自身阻燃特性,被广泛用于电线电缆的外皮制造。此外,PVC 在工业领域应用广泛,特别是在对耐酸碱腐蚀要求高的地方。PVC 生产中会使用大量

增塑剂(塑化剂,如DOP)。

### 5) 聚碳酸酯 (PC)

由于聚碳酸酯结构上的特殊性,现已成为五大工程塑料中增长速度最快的通用工程塑料。

生活中常被用于透明水杯、奶瓶、灯罩等。无毒。

## 6) 丙烯腈-丁二烯-苯乙烯共聚物 (ABS)

易加工,容易涂装、着色,是一种用途极广的热塑性工程塑料。广泛应用于家用电器、面板、面罩、组合件、配件等尤其是家用电器如洗衣机、空调、冰箱、电扇等,用量十分庞大,另外在塑料改性方面用途也很广。ABS 无毒,多用于结构材料,且不耐热。

### 7) 聚苯乙烯 (PS)

主要用于发泡成型,用作保温、隔热、防震、包装材料及漂浮制品。如泡沫塑料、快餐盒等。无色、无臭、无味而有光泽的透明固体。

由各种塑料的组成分析可知,塑料本身均为高聚物,不涉及有毒有害物质均,但是个别在聚合过程中需要加入添加剂,进而进入有毒有害物质,其中最为常见的则是邻苯二甲酸酯类增塑剂。

同时,2021 年于两个家电拆解车间中间,新建塑料粉碎生产线,通过设备将大件塑料粉碎成小件塑料。在粉碎过程中,可能有一定量塑料以粉尘形式沉降到土壤上引起污染。因此该企业在废旧塑料拆解和破碎过程中主要关注的污染物为**邻苯二甲酸酯类**。

# ③制冷剂

茂名天保再生资源发展有限公司在进行空调、冰箱以及机动车拆解过程中,都会涉及制冷剂的回收情况。通过资料收集和人员访谈得知,主要的制冷剂为氟利昂。

氟利昂是一种常见的制冷剂,其种类很多,常见的有 R22、R32、R134a 等。 氟利昂一般在常温常压下均为气体,略有芳香味。在低温加压情况下呈透明状液 体。能与卤代烃、一元醇或其他有机溶剂以任何比例混溶,氟制冷剂之间也能互 溶。由于氟利昂具有较强的化学稳定性、热稳定性、表面张力小、汽液两相变化 容易、无毒、亲油、价廉等,被广泛应用于制冷、发泡、溶剂、喷雾剂、电子元 件的清洗等行业中。

氟利昂的物理化学性质主要有: 1) 具有较强的化学稳定性,不分解; 2) 具有良好的热稳定性、不燃不爆; 3) 汽液两相变化容易; 4) 表面张力小、具有浸透性; 5) 无毒、无刺激性、无腐蚀性; 6) 电绝缘性高; 7) 具有适当的亲油性; 8) 价格低廉易于大量生产; 9) 化学式中氟原子数越多,对人体越无害,对金属的腐蚀性越小,化学稳定性越好; 10) 燃烧性随着分子中氢原子数目的减少而显著降低,蒸发温度随着氯原子数目的增加而升高。氟利昂也是非常重要的温室气体,虽然氟利昂在大气中的浓度显著低于其他温室气体,但其温室效应是二氧化碳的 3400~15000 倍,大量排放对大气的垂直温度结构和大气的辐射平衡产生重要影响,从而导致气候变化异常,并严重威胁地球的生态安全。

通过制冷剂氟利昂进行分析可知,虽然其会对大气臭氧产生环境污染,但其 化学性质相对稳定,对于人体不属于有毒有害物质。因此,但长期拆解过程中产 生大量的氟利昂,可能会通过扬撒或者大气沉降等方式,对土壤以及地下水的氟 化物指标产生影响,因此将**氟化物**识别为企业的特征污染物。

## ④危险废物

### (1) 尾气净化器

尾气净化器属于 HW50,参考《国家危险废物名录》为废催化剂。HW50 废催化剂来源于精炼石油产品制造、基础化学原料制造、农药制造、化学药品原料药制造、兽用药品制造、生物药品制造、环境治理等行业,主要包括石油产品催化裂化过程中产生的废催化剂;树脂、乳胶、增塑剂、胶水/胶合剂生产过程中合成、酯化、缩合等工序产生的废催化剂;有机溶剂生产过程中产生的废催化剂;化学原料制备过程中产生的废催化剂以及废汽车尾气净化催化剂等。废催化剂对生态环境和人体健康具有巨大的危害。部分新鲜催化剂本身就含有一些有毒有害成分。在生产过程中,与催化剂接触的物料中的有毒有害成分也会进入到催化剂中。若将废催化剂随意处置,其中的有毒有害成分会随着雨水的冲刷进入水体和土壤,对水体和土壤以及植被和生物等造成危害,并通过食物链危及人体健康。此外,部分废催化剂,如催化裂化废催化剂的粒径很小,极易被人吸入,从而危害人体健康。

其中尾气净化器的具体危废代码为900-049-50(废汽车尾气净化催化剂),

也就是我们常说的三元催化器。三元催化器,是安装在汽车排气系统中最重要的机外净化装置,它可将汽车尾气排出的 CO、HC 和 NOx 等有害气体通过氧化和还原作用转变为无害的二氧化碳、水和氮气。当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强 CO、HC 和 NOx 三种气体的活性,促使其进行一定的氧化-还原化学反应,其中 CO 在高温下氧化成为无色、无毒的二氧化碳气体;HC 化合物在高温下氧化成水(H<sub>2</sub>0)和二氧化碳;NOx 还原成氮气和氧气。三种有害气体变成无害气体,使汽车尾气得以净化。由于这种催化器可同时将废气中的三种主要有害物质转化为无害物质,故称三元。

三元催化反应器类似消声器。它的外面用双层不锈薄钢板制成筒形。在双层薄板夹层中装有绝热材料——石棉纤维毡。内部在网状隔板中间装有净化剂。净化剂由载体和催化剂组成。载体一般由三氧化二铝制成,其形状有球形、多棱体形和网状隔板等。净化剂实际上是起催化作用的,也称为催化剂。催化剂用的是金属铂、铑、钯。将其中一种喷涂在载体上,就构成了净化剂。

铂化学性质极稳定,不溶于强酸强碱溶液,在空气中不氧化。第一电离能 9.0eV。化合价为+2、+4 和+6。熔点 1772℃,沸点 3827℃。密度 21.46g/cm³。银白色金属,质柔软,有延展性。晶体结构为面心立方体。铂不属于有毒有害金属,其中顺铂还是癌症治疗的常用化学药物,具有较高疗效。属细胞周期非特异性药物,具有细胞毒性,可抑制癌细胞的 DNA 复制过程,并损伤其细胞膜上结构,有较强的广谱抗癌作用。

铑是一种稀少的贵金属是一种银白色、坚硬的金属,元素符号 Rh,铑属铂系元素,具有高反射率的性质铑金属通常不会形成氧化物,熔融的铑会吸收氧气,但在凝固的过程中释放。铑的熔点比铂高,密度比铂低。铑不溶于多数酸,它完全不溶于硝酸,稍溶于王水,不属于有毒有害金属。

钯是第五周期Ⅷ族铂系元素,元素符号 Pd,单质为银白色过渡金属,质软,有良好的延展性和可塑性,能锻造、压延和拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。也同样未被世界卫生组织国际癌症研究机构收录到致癌物清单中。

根据企业资料,尾气净化器拆解产量较少,同时其贵金属仅微量附着于载体上,加之铂、铑、钯毒性较低,不属于有毒有害金属类别,因此尾气净化器对于

企业土壤和地下水的影响较小。

# (2) 电解液(废铅蓄电池破损产生)、铅酸蓄电池

电解液属于铅酸蓄电池的内容物,均属于 HW31 含铅废物。HW31 含铅废物来源于玻璃制造、电子元件制造、炼钢、电池制造、工艺美术品制造、废弃资源综合利用以及某些非特定行业,主要包括使用铅盐和铅氧化物进行显像管玻璃熔炼过程中产生的废渣、线路板制造过程中电镀铅锡合金产生的废液、电炉炼钢过程中集(除)尘装置收集的粉尘和废水处理污泥、铅蓄电池生产过程中产生的废渣、集(除)尘装置收集的粉尘和废水处理污泥等。

铅蓄电池的主要组成分别为:极板、隔板、壳体、电解液。

极板: 极板分正极板和负极板两种,均由栅架和填充在其上的活性物质构成。 正极板上的活性物质是二氧化铅(PbO₂),呈深棕色;负极板上的活性物质是海绵 状纯铅(Pb),呈青灰色。

隔板:常用的隔板材料有木质隔板、微孔橡胶、微孔塑料、玻璃纤维和纸板等。

壳体:由耐酸、耐热、耐震、绝缘性好并且有一定力学性能的材料制成。 电解液:它由纯硫酸和蒸馏水按一定比例配制而成,而其密度一般为1.24~1.30g/ml。

通过对电解液(废铅蓄电池破损产生)、铅酸蓄电池的分析可知,其主要有毒有害成分为其主要是来源于电池极板上以及溶解到电解液中的铅。铅具有很强的神经毒性,在生物体内具有一定的积蓄性,对神经、心血管、生殖、免疫、肝肾等系统会产生多种毒性效应。在水体和土壤中无法通过自身净化作用将此类铅污染消除,铅最终通过生物链作用进入人体,在体内进行积累,对人体造成伤害。因此,企业在拆解过程中产生的电解液(废铅蓄电池破损产生)、铅酸蓄电池其特征污染物为铅,可能因滴漏、渗漏等途径对土壤和地下水产生污染。

#### (3) 墨盒、硒鼓

企业在打印机拆解过程中,产生少量墨盒、硒鼓,属于 HW49 其他废物类中的 900-999-49,为"未经使用而被所有人抛弃或者放弃的;淘汰、伪劣、过期、失效的;有关部门依法收缴以及接收的公众上交的危险化学品"。墨盒、硒鼓中的油墨常含有毒有害物质。油墨分为溶剂油墨、水性油墨、胶印油墨、能量固化

油墨、雕刻凹印油墨。

而其中常见应用最广的则为,溶剂油墨和水性油墨。参考国家标准《油墨中可挥发性有机化合物(VOCs)含量的限值》(GB 38507-2020),溶剂油墨以有机挥发性溶剂为主要稀释剂,为高挥发性有机化合物油墨产品。而水性油墨以水作为主要稀释剂,为低挥发性有机化合物油墨产品。可见,对于环境污染较大的为溶剂油墨。其中溶剂油墨中常见的溶剂和稀释剂主要有4类,分别为:

- ①醇类:对某些树脂溶解性好,气味也好,价格稍高,如乙醇、异丙醇、丁醇、乙二醇等。
- ②酯类:溶解性优,具有强烈的水果气味,价格高,如醋酸乙酯、醋酸丁酯等。
  - ③芳香族:溶解性优,气味较大,毒性大,如苯、甲苯、二甲苯等。
  - ④脂肪类:溶解性不太好,气味小,价格便宜,如石油醚、正己烷等。

通过各类溶剂和稀释剂的归纳可知,其中毒性较大的为芳香族溶剂,内含物主要由各类苯系物组成(苯、甲苯、二甲苯等)。

油墨中最为常见且毒性较大的有机挥发性溶剂为苯系物,包含苯、甲苯、二甲苯、乙苯、苯乙烯。因此将其识别为企业的特征污染物,可能在拆解和暂存过程中滴漏至地面,对于土壤和地下水产生影响。

### (4) 荧光灯、汞灯、汞开关

荧光灯、汞灯、汞开关属于危废类别中的 HW029。HW29 含汞废物来源于 天然气开采、常用有色金属矿采选、贵金属矿采选、印刷、基础化学原料制造、 合成材料制造、常用有色金属冶炼、电池制造、照明器具制造、通用仪器仪表制 造等行业,包括天然气除汞净化过程中产生的含汞废物,汞矿采选过程中产生尾 砂和集(除)尘装置收集的粉尘,混汞法提金工艺产生的含汞粉尘、残渣,使用 显影剂、汞化合物进行影响加厚以及使用显影剂、氨氯化汞进行影响加厚产生的 废液及残渣,水银电解槽法生产氯气过程中产生的废水处理污泥和废活性炭,卤 素和卤素化学品生产过程中产生的含汞硫酸钡污泥,氯乙烯生产过程中含汞废水 处理产生的废活性炭和吸附汞产生的废活性炭,铜、锌、铅冶炼过程中烟气制酸 产生的废甘汞,烟气净化产生的废酸及废酸处理污泥,含汞电池生产过程中产生 的含汞废浆层纸、含汞废锌膏、含汞废活性炭和废水处理污泥,含汞温度计生产 过程中产生的废渣, 废弃的含汞催化剂等。

汞及其化合物具有很强的毒性,含汞废物处理不当会对生态环境和人体造成具体威胁。汞在生物体内不易代谢排出,随食物链具有生物富集作用,其危害具有长期性和潜伏性,且会造成长久的、难以恢复的隐患和后果。汞对多种器官有毒害作用,其主要靶器官为神经、呼吸、消化、血液和皮肤等,汞对神经系统的毒性具有不可逆性胎儿期汞中毒可导致脑弥漫性发育不良,脑瘫、癫痫、智力障碍等症状,成人汞中毒引起的神经系统障碍表现为智力下降、共济失调和行为、语言、听力及视力障碍,并伴有发热、头晕、震颤、牙龈、胃肠炎、肌无力等症状,严重时合并肾功能衰竭、癫痫样发作或精神障碍。而最危险的是有机汞化合物中的二甲基汞,仅几微升二甲基汞接触在皮肤上就可以致死。

因此在电视/电脑拆解和废液晶电视机/废液晶显示器拆解过程中,产生的荧光灯、汞灯、汞开关中含有的汞可能对本企业的土壤以及地下水产生金属**汞**污染,将其识别为企业的特征污染物。

## (5) 荧光粉

企业在拆解电视/电脑时,会拆解出少量荧光粉,属于HW49其他废物中900-044-49"废弃的铅蓄电池、镉镍电池、氧化汞电池、汞开关、荧光粉和阴极射线管"。

荧光粉俗称夜光粉,通常分为光致储能夜光粉和带有放射性的夜光粉两类。 光致储能夜光粉是荧光粉在受到自然光、日光灯光、紫外光等照射后,把光能储 存起来,在停止光照射后,再缓慢地以荧光的方式释放出来,所以在夜间或者黑 暗处,仍能看到发光,持续时间长达几小时至十几小时。根据对荧光粉成分的分 析,其主要涉及的重金属有锑、锰,有部分汞灯荧光粉还涉及汞元素。因此企业 在拆解电视/电脑时产生荧光粉,可能在拆解和暂存过程中因扬撒,导致土壤产 生**锑、锰**或者**汞**的污染。引起将其识别为特征污染物。

#### (6) 废矿物油

废矿物油由企业拆解机动车辆时产生,属于 HW08。HW08 废矿物油与含矿物油废物来源于石油开采、天然气开采、精炼石油产品制造以及其他相关行业,主要包括石油开采和炼制产生的油泥和油脚,石油和煤炼制生产的溶剂油和含油污泥,含油废水处理过程中产生的废油及油泥,橡胶生产过程中产生的废溶剂油,

金属轧制和机械加工过程中产生的废油,机械维修和拆解过程中产生的废矿物油,以及废矿物油再生过程中产生的油渣及过滤介质等。

废矿物油与含矿物油废物含有多环芳烃(PAHs)、苯系物、重金属等多种有毒性物质,如随意倾倒不仅会对水体和土壤造成严重污染,也会对人体健康造成严重危害。如果把废矿物油倒入土壤,可导致植物死亡,被污染土壤内微生物灭绝。废矿物油内的有毒物质可通过人体和动物的表皮渗透到血液中,并在体内积累,会导致各种细胞丧失正常功能,是公认的致癌和致突变化合物。

为了解废矿物油理化性质及各成分组分含量,中国科学院广州化学研究所分析测试中心对茂名市进达汽车有限公司的废矿物油(废物代码为 900-199-08、900-201-08、900-21408)、茂名市银华高岭土实业有限公司的废矿物油(废物代码为 900-218-08、900-217-08)、石油化工股份有限公司茂名分公司的废矿物油(废物代码 900-249-08)等进行采样监测,检测结果见表 4.6-2。由废矿物油主要理化分析结果结合文献资料的调查可知,废矿物油中含有的有毒有害组分包括重金属铅、镉、铬、镍、砷及石油烃(C10-C40)、多环芳烃(PAHS)、苯系物(苯、甲苯、乙苯、二甲苯)。

本次样品检测结果 参考地区检测样品 项目 单位 样品 1#样品 2#样品 3#样品 4#样品 5#样品 6#样品检测汇总 湛江忠富项目 湛江湾达项目湛江福丰项目 嘉州地区 佛山地区 含水率 % 2.20 1.92 2.84 2.46 1.99 1.92~3.0 0.04~0.3 2.54-3.66 0.24-0.35 密度 (25℃) 876 870~877 849~882 860,3-957.6 866.1-899.2 849-970 kg/m3 877 870 871 875 872 852 33-248 粘度 (25℃) 137 138 138 140 138 135 135-140 103 (常温) mpa-s >100 160-210 闪点 >100 >100 >100 >100 >100 >100 214 1,2 1.2-1.9 酸值 igKOH/s 1.5 1.5 1.9 1.7 1.4 0.1-0.11 机械杂质 26 17 17 19 1.5 20 18 15-20 0.42-0.87 0.01-0.02 磁 % 0.0516 0.054 0.0511 0.057 0.0478 0.0493 0.0478-0.057 0.0019-0.058 NG-0.09 挥发酚 9% 0.0052 | 0.0061 | 0.0054 0.0055 0.0058 0.005 | 0.005~0.0061 | ND~0.0006 军发分 (25°C 1.5 挥发分 (40°C) % 3.1 3.2 3.2 3.0~3.6 3.6 3.4 3.0 % 0.126 0.11 0.0834 0.11 0.157 0.118 0.0834-0.157 0.12 - 0.450.25-0.35 0.46-0.58 0.0036-0.0732 酢 铅 mg/kg <1.0 <1.0 51 <1.0 4.6 <1.0 <1.0-5.1 ND-2.3 <1.0 mg/kg 貓 <1.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 ND <1.0 辂 2.2 2.5 4.2 2.4 39 2.1 21-42 NG-3.9 mg/kg ND 쇞 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ND mg/kg 0.07-0.12 <1.0 碰 mg/kg 0.08 OIL 0.12 0.08 0.07 0.09 0.06~0.32 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01~0.02 < 0.5 饱和经含量 96.6 97.6 96.0 96.1 96.6 97.0 96.0-97.6 75.92-94.56 88.03-92.12 %

表 3.4-1 废矿物油主要理化性质

注: ①ND 为未检出; ②原料重金属去向分析: 参照《典型废矿物油的产生工艺及其重金属涂度特征》(环境工程学报,2015年5月),废矿物油再生利用,绝大部分重金属进入废渣中(如油渣、蒸馏残渣等),少部分残留在再生产品中。

同时,本次污染识别查阅了相关文献。在期刊《环境与可持续发展》2021 年第4期中,查阅到文献《机动车维修行业废矿物油回收管理现状分析及对策研究》。 在该文献中提到,废矿物油是指从石油、煤炭、油页岩中提取和精炼并在开采、 加工和使用过程中由于外在因素作用导致改变了原有的物理和化学性能,不能继续被使用的矿物油,主要来自工业生产和社会生活,后者主要指的是机动车维修及机械维修行业生产过程中产生的废矿物油。近年来,我国的润滑油消耗量不断上升。废矿物油中主体成分并未变质,再生处理后可以生成润滑油产品的原材料基础油,废油再生的成本显著低于原油提炼加工,其中的可观利润使得无危险废物经营许可证的非法商贩不断涌入废矿物油回收利用市场,但无证企业大多采用"土法炼油"等国家明令禁止的淘汰落后工艺且无污染防治措施,加工提炼过程中产生的危险废物既不可能申报更不可能进入正常合法的处置渠道,只能通过非法途径到处转移和倾倒填埋。长期堆存的这些危险废物存在着很大的环境风险。废矿物油中含有多种有毒有害物质,如重金属、苯系物、多环芳烃等。

因此,结合文献和中国科学院广州化学研究所的测试结果表明,该企业拆解 报废机动车产生的废矿物油所关注的特征污染物有**重金属铅、镉、铬、镍、砷及** 石油烃(C10-C40)、多环芳烃(PAHS)、苯系物(苯、甲苯、乙苯、二甲苯)。

## (7) 电路板

企业在拆除家电、显示器、报废机动车时,都会产生大量的电路板,电路板 危废分类属于 HW49,细分为 900-045-49,"废电路板(包括废电路板上附带的 元器件、芯片、插件、贴脚等)"。

PCB(Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气相互连接的载体。由于它是采用电子印刷术制作的,故被称为"印刷"电路板。印刷电路板生产所需的主要原料包括覆铜板、铜箔、半固化片、化学药水、阳极材料、干膜、油墨等。

电路板属于电子电器的最主要部件,欧盟的 RoSH 指令对其有毒有害物质提出明确要求。RoHS 是由欧盟立法制定的一项强制性标准,它的全称是《关于限制在电子电气设备中使用某些有害成分的指令》(Restriction of Hazardous Substances)。该标准已于 2006 年 7 月 1 日开始正式实施,主要用于规范电子电气产品的材料及工艺标准,使之更加有利于人体健康及环境保护。该标准的目的在于消除电器电子产品中的铅、汞、镉、六价铬、多溴联苯和多溴二苯醚共 6 项物质,并重点规定了镉的含量不能超过 0.01%。其中,镉和铅常检出于电路板样品中。

同时,根据资料查证 PCB 板常会进行镀锌处理。PCB 电镀锌目的是为了防止钢铁类物体被腐蚀,提高钢铁的耐蚀性及使用寿命,同时也使产品增加装饰性的外观,钢铁随着时间的增长会被风化,水或泥土腐蚀。国内每年被腐蚀的钢铁差不多占整个钢铁量的十分之一,所以,为了保护钢铁或其零件的使用寿命,一般都采用 PCB 电镀锌来将钢铁加工处理。由于锌在干燥空气中不易变化,而且在潮湿的环境下更能产生一种碱式碳酸锌薄膜,这种薄膜就能保护好内部零件而不被腐蚀损坏,即使锌层被某种因素破坏的情况下,锌和钢经过一段时间结合会形成一种微电池,而使钢基体成为阴极而受到保护。

另外,焊锡是在焊接线路中连接电子元器件的重要工业原材料,是一种熔点 较低的焊料,主要指用锡基合金做的焊料。焊锡的制作方法是先用熔融法制锭, 然后压力加工成材。广泛应用于电子工业、家电制造业、汽车制造业、维修业和 日常生活中。焊锡材料是电子行业的生产与维修工作中必不可少的。

结合电路板的组成、原辅材料、焊接工艺以及 RoSH 指令执行情况分析, 废电路板可能对于本地块产生的特征污染物为铜、铅、镉、锌、锡。

## (8) CRT 锥玻璃

CRT 锥玻璃产生于 CRT 电视电脑拆解,危废分类属于 HW49 中的 900-044-49"废弃的铅蓄电池、镉镍电池、氧化汞电池、汞开关、荧光粉和阴极射线管"。CRT 锥玻璃属于含铅玻璃。含铅玻璃的密度、折射率、色散以及对 X 射线和 Y 射线吸收系数等性能会随着氧化铅含量的增大而显著增强,因此铅玻璃被广泛应用于防辐射玻璃、光学玻璃、低温封接玻璃、铅晶质玻璃、高折射微珠玻璃及艺术器皿玻璃等领域。但随着人们对重金属危害认识的不断加深,铅玻璃中因含有大量重金属铅被公认为一种典型的危险废弃物。目前废弃铅玻璃主要来源于报废的老旧电视机、计算机显示器、示波器等,这些废弃的 CRT 显示器被分解后的产生的锥玻璃(含有 19%~30%的 PbO),除少部分被回收利用外其余大部分被随意丢弃或填埋处理。

考虑到 CRT 锥玻璃中有毒有害金属铅含量较高,可能在拆解和暂存过程中 对土壤和地下水引入**铅**的污染。

## (9) 其他附属危废: 机油滤清器、废含油抹布、废过滤滤芯、废活性炭

表 3.4-2 其他附属危废识别

| 危废           | 类型            | 代码         | 分析说明                     |  |  |
|--------------|---------------|------------|--------------------------|--|--|
| 机油滤清器        | HW49 其他       | 900-041-49 | 其有害物质主要来源于滤清器上沾有的废矿      |  |  |
| 771.7田小心1月4日 | 废物            | 900-041-49 | 物油,其特征污染物参考废矿物油进行识别。     |  |  |
| 废含油抹布        | HW49 其他       | 900-041-49 | 其有害物质主要来源于滤清器上沾有的废矿      |  |  |
| 及占細抓非        | 废物            | 900-041-49 | 物油,其特征污染物参考废矿物油进行识别。     |  |  |
|              |               |            | 废过滤滤芯主要来源于隔油池,隔油池中油      |  |  |
| <br>  废过滤滤芯  | HW49 其他<br>废物 | 900-041-49 | 污来源主要为机动车拆解产生机油、润滑油、     |  |  |
| <u>反</u>     |               |            | 变速箱油等废矿物油,其特征污染物参考废      |  |  |
|              |               |            | 矿物油进行识别。                 |  |  |
|              | HW49 其他<br>废物 | 900-039-49 | 废活性炭主要来源于排气筒前端处理工艺,      |  |  |
|              |               |            | 在排气筒中可能吸附 CRT 电视及 CRT 电脑 |  |  |
|              |               |            | 拆解线及液晶电视及电脑拆解线产生的废       |  |  |
| 废活性炭         |               |            | 气、废空调拆解线产生的制冷剂和废矿物油      |  |  |
|              |               |            | 废气、废冰箱自动拆解线产生的制冷剂、废      |  |  |
|              |               |            | 小家电综合拆解线产生的粉尘废气。以上工      |  |  |
|              |               |            | 艺拆解产生有毒有害物质均以在上文识别。      |  |  |

综上所述,通过分析茂名天保再生资源发展有限公司的工艺流程、产排污情况、固体废物情况、危险废物情况,识别出对于企业土壤以及地下水可能产生影响的有毒有害物质为:

A.金属指标:铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡;

B.有机物指标: 苯系物(苯、甲苯、二甲苯、乙苯、苯乙烯)、多环芳烃(苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a, h]蒽、茚并[1,2,3-cd] 芘、萘)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基酯)、邻苯二甲酸丁基苄酯、邻苯二甲酸二正辛酯)、石油烃(C10-C40);

C.理化指标: 氟化物。

# 4、自行监测方案

# 4.1 重点监测单元识别与分类

# 4.1.1 重点单元情况

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)、《重点监管单位土壤污染隐患排查指南(试行)》等相关技术规范的要求,排查企业内有潜在土壤污染隐患的重点场所及重点设施设备,将其中可能通过渗漏、流失、扬散等途径导致土壤和地下水污染的场所或设施设备识别为重点监测单元,开展土壤和地下水监测工作。

根据对地块收集到的资料分析,结合现场踏勘等调查,确定了地块内的重点设施主要包括原辅料及成品装卸区物料输送设备、储罐,物料内部转运区输送设备、生产系统、生产系统附属、废水处理系统。由原辅材料的输送转移、危废转运及生产废水的收集输送及处理过程中可能发生的跑冒滴漏存在一定的对土壤及地下水污染的风险。各个疑似污染区域的识别原因及特征污染物见表 4.1-1。结合企业重点场所和重点设施设备的识别等情况,对重点监测单元进行合并。本次共识别并划定重点单元 3 个,重点单元划定情况见表 4.1-1。

表 4.1-1 重点单元及疑似污染区域污染识别表

| 编号 | 重点<br>单元<br>名称 | 面积<br>(m<br>²) | 疑似污<br>染区域               | 关注特征污染物                                                 | 识别原因                                                                                      | 划定依据                                                                                                         |
|----|----------------|----------------|--------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1  | 原料存 废水 理区      | 3400           | 废水处<br>理区、原<br>料暂存<br>区域 | 铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物、多环芳烃、邻苯二甲酸酯类、石油烃(C10-C40)、氟化物 | 废水在储存及处理<br>过程中可能因池体<br>开裂、渗漏等情况<br>带来污染风险,同<br>时,原料暂存过程<br>中可能存在物料扬<br>撒等情况污染土壤<br>的可能性。 | 该重点监测单元均<br>为连片硬化地面,主<br>要用于废旧家电和<br>报废机动车暂存,在<br>硬化地面西北角区<br>域废水处理区,属于<br>其地下水下游方向,<br>因此将其划分为一<br>个重点监测单元。 |

| 编号 | 重点<br>单元<br>名称 | 面积<br>(m<br><sup>2</sup> ) | 疑似污<br>染区域         | 关注特征污染物                                                 | 识别原因                                                                           | 划定依据                                                                             |
|----|----------------|----------------------------|--------------------|---------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 2  | 生产区            | 1700<br>0                  | 报 车 间旧 解宽动拆车区家拆车间  | 铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物、多环芳烃、邻苯二甲酸酯类、石油烃(C10-C40)、氟化物 | 机动车拆解过程中产生的机油、汽油、汽油、等废矿物 建新环醇 电光清油 等废证 电光光 电光光 电光光 电光光 电光光 电光 电光 一 一 一 一 一 一 一 | 该重点监测单元均<br>为企业的核心区域,<br>均属于拆解生产线,<br>也均属于棚内作业,<br>因此将其划分为一<br>个重点监测单元。          |
| 3  | 物仓与废存          | 1160                       | 危废贮<br>存区、物<br>料仓库 | 铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物、多环芳烃、邻苯二甲酸酯类、石油烃(C10-C40)、氟化物 | 拆解后的物料以及<br>危险废物在长期储<br>存过程中可能存在<br>的跑冒滴漏或泄漏<br>带来污染风险。                        | 该重点监测单元均<br>为拆解后产物的暂<br>存区,包括一般物料<br>和危废,用途接近且<br>为连片建筑,因此将<br>其划分为一个重点<br>监测单元。 |



图 4.1-1 重点监测单元划分图

## 4.1.2 识别分类结果及原因

根据重点监测单位分类原则,结合厂区重点设施设备及场所情况可知,公司厂区存在地下、半地下池体以及接地的储罐。将内部存在隐蔽性重点设施设备的重点监测单元划分为一类单元,除一类单元外其他重点监测单元划分为二类单元。

从识别出的 3 个重点监测单元中,根据表 4.1-2 的原则对重点监测单元分类, 共识别出 2 个一类单元,1 个二类单元,本企业的重点监测单元分类情况见表 4.1-3 和表 4.1-4。

表 4.1-2 重点监测单元分类表

| 单元类别 | 划分依据                 |
|------|----------------------|
| 一类单元 | 内部存在隐蔽性重点设施设备的重点监测单元 |
| 二类单元 | 除一类单元外其他重点监测单元       |

注:隐蔽性重点设施设备,指污染发生后不能及时发现或处理的重点设施设备,如地下、半地下或接地的储罐、池体、管道等。

表 4.1-3 重点单元分类情况表

| 编号 | 重点单元<br>名称         | 单元类别 | 分类依据                                                                                                                                                                                                    |
|----|--------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 原料暂存<br>与废水处<br>理区 | 一类单元 | 原料暂存仅为地面暂存,不存在隐蔽性重点设施设备。而危废处理区存在地下水池体,用于存储以及处理初期雨水和清洗废水,属于存在隐蔽性重点设施设备,因此依据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ 1209-2021)应将其划分为一类单元。                                                                             |
| 2  | 生产区                | 一类单元 | 生产区由3个拆解车间组成,其中拆解车间(一)和拆解车间(二)为废旧家电拆解车间,长期进行废家电拆解车间,长期进行废家电拆解和塑料粉碎,均在地面上开展工作,不存在隐蔽性重点设施设备。而拆解车间(三)内部存在地槽,用于放入油桶以收集拆解过程产生的废矿物油并对其进行称量,属于存在隐蔽性重点设施设备,因此依据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)应将其划分为一类单元。 |
| 3  | 物料仓库<br>与危废暂<br>存区 | 二类单元 | 危废贮存区内存长期贮存废旧家电拆解以及报废机动车拆解产生的危险废物,均为地上构筑物,均不涉及隐蔽性重点设施设备。同时,物料仓库长期进行废家电拆解物料贮存,也不存在隐蔽性重点设施设备。因此依据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)应将其划分为二类单元。                                                         |

### 4.2 监测点位布设方案

## 4.2.1 重点单元及相应监测点/监测井的布设位置

一类单元涉及的每个隐蔽性重点设施设备周边原则上均应布设至少1个深层土壤监测点;单元内部或周边还应布设至少1个表层土壤监测点,布设在土壤裸露处。二类单元内部或周边原则上均应布设至少1个表层土壤监测点,布设在土壤裸露处。重点场所或重点设施设备分布较密集的区域可统一划分为一个重点监测单元,每个重点监测单元原则上面积不大于6400m²。

企业原则上应布设至少1个地下水对照点。对照点布设在企业用地地下水流向上游处,与污染物监测井设置在同一含水层,并应尽量保证不受自行监测企业生产过程影响。每个重点单元对应的地下水监测井不应少于1个。每个企业地下水监测井(含对照点)总数原则上不应少于3个,且尽量避免在同一直线上。

在对重点区域进行监测单元划分的基础上,按照相关布点原则及方案,结合现场踏勘的实际,进行土壤及地下水监测点位的布设。2022年自行监测共计布设了土壤点位8个,其中二类单元(物料仓库与危废暂存区)主要采集紧邻表土共计2个;一类单元(包括原料暂存与废水处理区、生产区)共布设深层土壤2个,表层土壤4个。地下水监测井布设4个,其中1个为已有监测井(W1),3个新建监测井(BJ1、W2、W3),地下水背景对照点(BJ1)靠近地块地下水上游方向,位于企业东南侧围墙边。点位布设如图4.2-1及图4.2-2所示。



图 4.2-1 企业地下水对照点布设图



图 4.2-2 企业土壤及地下水监测点位布设图

### 表 4.2-1 土壤监测点位布设表

| 所属重点区域           | 点位编号 | 经纬度                          | 采样类型 | 重点设施埋<br>深 | 钻探深度 | 采样深度     | 布设原因分析                                                                                 |
|------------------|------|------------------------------|------|------------|------|----------|----------------------------------------------------------------------------------------|
| 物料仓库与危废暂         | T1   | E110.823052°,<br>N21.688998° | 表层土壤 | /          | /    | 0-0.5m   | 点位布设于紧邻物料仓库区的裸露土壤,捕捉废家电拆<br>解物料在暂存过程中可能对土壤造成的污染                                        |
| 存区(二类单元)         | T2   | E110.822283°,<br>N21.689865° | 表层土壤 | /          | /    | 0-0.5m   | 点位布设于紧邻危废储存区的裸露土壤,捕捉各类危险<br>废物在转运和暂存过程中可能滴漏、扬撒等对土壤造成<br>的污染                            |
|                  | S1   | E110.822381°,<br>N21.690263° | 深层土壤 | 2.0m       | 12m  | 2.5-3.0m | 点位布设于紧邻报废机动车拆解车间的裸露土壤,靠近<br>报废机动车涉油拆解区域,捕捉机动车拆解工序中油品<br>收集过程因油品扬撒、滴漏等造成的深层土壤污染         |
| 生产区(一类单元)        | Т3   | E110.822395°,<br>N21.690412° | 表层土壤 | /          | /    | 0-0.5m   | 点位布设于紧邻报废机动车拆解车间的裸露土壤,靠近<br>报废机动车涉油拆解区域,捕捉机动车拆解过程中因油<br>品收集过程中因油品扬撒、滴漏等造成的周边裸露土壤<br>污染 |
|                  | T4   | E110.823952°,<br>N21.689136° | 表层土壤 | /          | /    | 0-0.5m   | 点位布设于紧邻废旧家电拆除车间的裸露土壤,同时靠<br>近有组织排放口和塑料粉碎区,捕捉废旧家电拆解、大<br>气沉降、塑料粉碎等过程对于周边土壤的影响           |
|                  | S2   | E110.822918°,<br>N21.690536° | 深层土壤 | 4.0m       | 12m  | 4.5-5.0m | 点位布设于紧邻废水隔油池和应急池的位置,捕捉可能<br>因池体开裂或者废水渗漏等情况造成的深层土壤污染                                    |
| 原料暂存与废水处理区(一类单元) | Т5   | E110.822395°,<br>N21.690412° | 表层土壤 | /          | /    | 0-0.5m   | 点位布设于紧邻废水隔油池和应急池的裸露土壤,捕捉可能因池体废水外溢,雨水倒灌等情况造成的周边表层<br>土壤污染                               |
|                  | Т6   | E110.823801°,<br>N21.690333° | 表层土壤 | /          | /    | 0-0.5m   | 点位布设于紧邻原料贮存区的裸露土壤,捕捉原料暂存<br>过程中,其中的有毒有害物质可能因滴漏、扬撒、雨水<br>冲刷等情况对土壤造成的污染                  |

### 表 4.2-2 地下水监测点位布设表

| 监测井编号 | 监测井类型         | 经纬度                          | 位置及布点原因                                                                                                  | 所属重点区域及其作<br>用    | 重点区域监测井个数 | 是否满足标准要求                         |
|-------|---------------|------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|-----------|----------------------------------|
| W1    | 己有(2019年建设)   | E110.822061°,<br>N21.690008° | 点位靠近报废机动车拆解危废暂存<br>区,为物料仓库与危废暂存区下游<br>方向,捕捉物料以及各种危废在暂<br>存过程中可能因滴漏、扬撒、渗漏<br>等情况对地下水造成的污染                 | 物料仓库与危废暂存<br>区监测井 | 1         | 是,每个重点单元对<br>应的地下水监测井不<br>应少于1 个 |
| W2    | 新建 (2022 年建设) | E110.822381°,<br>N21.690263° | 点位布设紧邻报废机动车拆解车间<br>的涉油拆解区域以及废矿物油收集<br>地槽,为整个生产拆解车间的下游<br>方向,捕捉机动车涉油拆解过程中,<br>可能因油品渗漏、油品滴漏等情况<br>造成的地下水污染 | 生产区监测井            | 1         | 是,每个重点单元对<br>应的地下水监测井不<br>应少于1个  |
| W3    | 新建 (2022 年建设) | E110.822918°,<br>N21.690536° | 点位布设于紧邻废水隔油池和应急<br>池的裸露土壤处,为整个企业的地<br>下水下游方向,捕捉可能池体开裂<br>或者废水渗漏对地下水产生的污染                                 | 原料暂存与废水处理<br>区监测井 | 1         | 是,每个重点单元对<br>应的地下水监测井不<br>应少于1个  |
| BJ1   | 新建(2022 年建设)  | E110.824063°,<br>N21.688537° | 位于企业的东南侧围墙,为地下水<br>上游方向,作为地下水对照点                                                                         | 地下水对照点            | 1         | 是,企业原则上应布<br>设至少1个地下水对<br>照点     |

### 4.2.2 现有地下水监测井情况

根据布点采样方案可知,本次采样涉及已有井1个,为W1,位置位于报废机动车危废暂存间前。根据企业提供的相关资料显示,该井建设于2019年,为企业进行土壤和地下水自行监测时建设。该次土壤和地下水自行监测调查报告由深圳市政院检测有限公司茂名分公司进行编制,其监测由深圳市中证安康检测技术有限公司负责,建井于2019年11月5日。

该地下水监测井严格按照《地下水环境监测技术规范》HJ 164-2020 进行建设,使用其进行地下水样品采集具有代表性。

- ①监测井所采用的构筑材料白色 PVC 管,不改变地下水的化学成分,不会 干扰监测过程中对地下水中化合物的分析;
- ②监测井滤水管长度足够,涵盖稳定水位,满足丰水期间有1m的滤水管位于水面以上,枯水期有1m的滤水管位于地下水面以下的要求:
  - ③井管的内径大于 50 mm, 实测约为 57mm, 能够满足洗井和取水的要求;
  - ④井管各接头连接时无任何粘合剂或涂料:
- ⑤为保护监测井,现场建设了监测井井口保护盖,可以有效避免外来地表水、雨水等进入地下水井内部;
- ⑥地下水井周边区域裸露土壤区域已根据专家建议进行封闭,减少外部环境 对于该地下水井的影响,保证其地下水的代表性。

## 4.2.3 识别关注污染物

根据污染识别及调查分析结果,调查范围主要潜在的特征污染物为铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物、多环芳烃、邻苯二甲酸酯类、石油烃(C10-C40)、氟化物。

# 4.3 监测指标与监测频次

# 4.3.1 监测指标的选取

初次监测原则上土壤监测点的监测指标至少应包含 GB36600 表 1 的基本项目, 地下水监测井的监测指标至少应包含 GB/T14848 表 1 的常规指标(微生物

指标、放射性指标除外)。土壤和地下水基本项目指标见表 4.3-1。

类别 项目 土壤理化性质(1项) рН 镉、铅、铬(六价)、铜、镍、汞、砷;四氯化碳、氯仿、氯 甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二 氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、 土壤基本项目(45项) 1.2-二氯苯、1.4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对 二甲苯、邻二甲苯;硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并 [a]芘、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并 [1,2,3-c,d]芘、萘; pH、色(度)、嗅和味、浑浊度、肉眼可见物、总硬度、溶解 性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚 类、阴离子表面活性剂、耗氧量、氨氮、硫化物、钠、亚硝酸 地下水基本项目(35项) 盐、硝酸盐、氟化物、碘化物、氰化物、汞、砷、硒、镉、铬 (六价)、铅、三氯甲烷、四氯化碳、苯、甲苯

表 4.3-1 土壤和地下水基本常规项目一览表

根据前文分析,企业识别出的特征污染物为铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物、多环芳烃、邻苯二甲酸酯类、石油烃(C10-C40)、氟化物。依据《工业企业土壤和地下水自行监测技术指南(试行)》HJ 1209-2021 及相关规范要求:土壤项目必须包含《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)表1基本项目,地下水监测井的监测指标至少应包括 GB/T 14848 表1常规指标(微生物指标、放射性指标除外)。

企业内任何重点单元涉及上述范围外的关注污染物,应根据其土壤或地下水的污染特性,将其纳入企业内所有土壤或地下水监测点的初次监测指标。

关注污染物一般包括:

- 1) 企业环境影响评价文件及其批复中确定的土壤和地下水特征因子;
- 2) 排污许可证等相关管理规定或企业执行的污染物排放(控制)标准中可能对土壤或地下水产生影响的污染物指标;
- 3) 企业生产过程的原辅用料、生产工艺、中间及最终产品中可能对土壤或 地下水产生影响的,已纳入有毒有害或优先控制污染物名录的污染物指标或其他 有毒污染物指标:
  - 4) 上述污染物在土壤或地下水中转化或降解产生的污染物;
  - 5) 涉及 HJ 164 附录 F 中对应行业的特征项目(仅限地下水监测)。

因此依据《工业企业土壤和地下水自行监测技术指南(试行)》HJ 1209-2021 进行土壤以及地下水指标的选取。

1、依据企业环境影响评价文件以及批复:①生产废水执行广东省地方标准《水污染物排放限值》中第二时段三级标准,需要监测的项目为:pH、悬浮物、化学需氧量、BOD5、氨氮、石油类。②生活废水执行广东省地方标准《水污染物排放限值》中第二时段三级标准,需要监测的项目为:pH、悬浮物、化学需氧量、BOD5、氨氮、动植物油类。③有组织废气执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级排放标准,涉及的项目有颗粒物和氟化物。④无组织废气监测项目涉及总悬浮颗粒物和非甲烷总烃。⑤固体废物已于章节3.5进行逐一查找,逐一识别,已列为企业特征污染物。

因此,依据企业环境影响评价文件及其批复,其中对土壤和地下水而言,主要应关注的因子为**氟化物**。

2、通过网络查阅企业的排污许可证,根据政府相关网址公示可知。企业主要污染物类别为:废水、废气。大气主要污染物种类:颗粒物、非甲烷总烃、铅及其化合物、汞及其化合物。废水主要污染物种类:化学需氧量、氨氮、悬浮物、pH、石油类、总磷、BOD5。

因此,根据企业的排污许可证,主要关注的因子为铅、汞。

- 3、前面章节,已对该企业生产过程的原辅用料、生产工艺、中间及最终产品进行分析,其中对土壤或地下水产生影响的并属于有毒有害污染物的指标为铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物、多环芳烃、邻苯二甲酸酯类、石油烃(C10-C40)、氟化物。
- 4、企业在生产过程中仅为物料拆解过程,不涉及化学反应,上述污染物在 土壤或地下水中不涉及转化或降解产生新的污染物。
- 5、查阅 HJ 164-2020《地下水环境监测技术规范》,里面包含有 28 个行业类型,根据比对,该企业均不属于附录 F 中的 28 个行业类型。

综上,依据标准(HJ 1209-2021)对土壤以及地下水指标进行一一核实以及 选取后,土壤和地下水监测指标如下。

#### (1) 土壤监测指标

结合《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)相关

要求,本次 2022 年自行监测土壤样品的检测项目为 GB36600-2018 表 1 中 45 项基本项目+pH 值、水分+特征污染物:铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯乙烯)、多环芳烃(苯并(a)蒽、苯并(a)芘、苯并(b)荧蒽、苯并(k)荧蒽、菌、二苯并(a,h)蒽、茚并(1,2,3-c,d)芘、萘)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、石油烃(C10-C40)、氟化物,其中与 GB36600-2018 表 1 中 45 项基本项目重复的因子不再重复取样监测。

#### (2) 地下水监测指标

本次 2022 年自行监测地下水样品的检测项目包括 GB/T14848-2017 中表 1 常规指标 35 项( 微生物指标、放射性指标除外) +特征污染物:铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯乙烯)、多环芳烃(苯并(a)蒽、苯并(a)芘、苯并(b)荧蒽、苯并(k)荧蒽、菌、二苯并(a,h)蒽、茚并(1,2,3-c,d)芘、萘)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、可萃取性石油烃(C10-C40)、氟化物。其中与 GB/T14848-2017 中表 1 常规指标 35 项(微生物指标、放射性指标除外)重复的因子不再重复取样监测。

#### (3) 2023 年监测指标的选取

根据 2022 年度企业自行监测结果,企业土壤无超标情况,地下水锰、氨氮、 耗氧量存在超标情况。因此根据 2022 年自行监测方案,2023 年监测指标为特征 污染物指标和上年度超标因子,如下:

#### ①土壤(37项)

特征污染物(37项):铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯乙烯)、多环芳烃 16 种(苯并(a)蒽、苯并(a)芘、苯并(b)炭蒽、苯并(k)炭蒽、䓛、二苯并(a,h)蒽、茚并(1,2,3-c,d)芘、萘、芘、芴、苊、苊烯、苯并[g,h,i]菲、炭蒽、菲、蒽)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、石油烃(C10-C40)、氟化物。

#### ②地下水 (39 项)

特征污染物(37项):铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、

苯系物 (苯、甲苯、乙苯、二甲苯、苯乙烯)、多环芳烃 16 种 (苯并 (a) 蒽、苯并 (a) 芘、苯并 (b) 荧蒽、苯并 (k) 荧蒽、菌、二苯并 (a,h) 蒽、茚并 (1,2,3-c,d) 芘、萘、芘、芴、苊、苊烯、苯并 [g,h,i] 菲、荧蒽、菲、蒽)、邻苯二甲酸酯类 (邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、可萃取性石油烃 (C10-C40)、氟化物;

上年度超标项目(3项):锰、氨氮、耗氧量。

### 4.3.2 监测频次

经查阅资料,企业周边 1km 范围内不涉及《建设项目环境影响评价分类管理名录》中的国家公园、自然保护区、世界文化和自然遗产地、海洋特别保护区、饮用水水源保护区和生态保护红线管控范围等环境敏感区,不涉及《环境影响评价技术导则 地下水环境》(HJ610-2016)中的集中式饮用水水源保护区准保护区和补给径流区范围等涉及地下水的环境敏感区。因此,企业周边 1km 范围内不存在地下水环境敏感区。根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)的要求,自行监测的最低监测频次按照表 4.3-3 进行。

 监测对象
 监测频次

 土壤
 表层土壤
 1年1次

 深层土壤
 3年1次

 一类单元
 半年1次

 二类单元
 1年1次

表 4.3-3 自行监测最低频次一览表

在不出现超标情况下,该企业各个点位土壤与地下水监测频次如表 4.3-4 和表 4.3-5 所示。若有监测点位出现超标情况时,该点位监测的频次需要加密。

| 所属重点监测区<br>域 | 点位名称 | 采样类型 | 采样深度     | 监测频次    |
|--------------|------|------|----------|---------|
| 物料仓库与危废      | T1   | 表土   | 0-0.5m   | 1 次/年   |
| 暂存区(二类单元)    | Т2   | 表土   | 0-0.5m   | 1 次/年   |
| 生产区(一类单      | S1   | 深层土  | 2.5-3.0m | 1 次/3 年 |
| 元)           | Т3   | 表土   | 0-0.5m   | 1 次/年   |
| 767          | T4   | 表土   | 0-0.5m   | 1 次/年   |
| 原料暂存与废水      | S2   | 深层土  | 4.5-5.0m | 1 次/3 年 |
| 处理区(一类单      | T5   | 表土   | 0-0.5m   | 1 次/年   |
| 元)           | T6   | 表土   | 0-0.5m   | 1 次/年   |

表 4.3-4 土壤点位监测频次汇总表

表 4.3-5 地下水点位监测频次汇总表

| 监测井编号 | 监测井性质         | 单元类型 | 监测频次   |
|-------|---------------|------|--------|
| W1    | 现有(2019年建设)   | 二类单元 | 1 次/年  |
| W2    | 新建 (2022 年建设) | 一类单元 | 1 次/半年 |
| W3    | 新建 (2022 年建设) | 一类单元 | 1 次/半年 |
| ВЈ1   | 新建 (2022 年建设) | 背景点  | 1 次/年  |

# 4.4 风险筛选值的选取

# 4.4.1 土壤风险筛选值

本项目为工业用地,因此优先采用《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类用地的筛选值进行评价,对于该标准中缺失的污染物,筛选值则采用《建设用地土壤污染风险评估技术导则》(HJ25.3-2019)默认参数和《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)编制说明中相关参数推导的值作为这些指标的风险评价筛选值。本地块土壤环境风险筛选值见表 4.4-1 所示。

表 4.4-1 地块土壤环境风险评价筛选值 (单位: mg/kg)

| 序号  | 土壤污染物项目         | 第二类用地风险筛选值 |
|-----|-----------------|------------|
| 1   | 镉               | 65         |
| 2   | 铅               | 800        |
| 3   | 铜               | 18000      |
| 4   | 镍               | 900        |
| 5   | 汞               | 38         |
| 6   | 砷               | 60         |
| 7*  | 锡               | 268000     |
| 8   | 锑               | 180        |
| 9*  | 总铬              | 3740       |
| 10* | 锌               | 134000     |
| 11* | 锰               | 16600      |
| 12  | 石油烃 (C10-C40)   | 4500       |
| 13  | 邻苯二甲酸二正辛酯       | 2812       |
| 14  | 邻苯二甲酸二(2-乙基己基)酯 | 121        |
| 15  | 邻苯二甲酸丁基苄酯       | 900        |
| 16  | 苯               | 4          |
| 17  | 乙苯              | 28         |
| 18  | 苯乙烯             | 1290       |
| 19  | 甲苯              | 1200       |
| 20  | 间二甲苯+对二甲苯       | 570        |
| 21  | 邻二甲苯            | 640        |
| 22  | 萘               | 70         |
| 23  | 苯并[a]蒽          | 15         |
| 24  | 苯并[a]芘          | 1.5        |
| 25  | 苯并[b]荧蒽         | 15         |
| 26  | 苯并[k]荧蒽         | 151        |

| 序号  | 土壤污染物项目        | 第二类用地风险筛选值 |
|-----|----------------|------------|
| 27  | 崫              | 1293       |
| 28  | 二苯并[a,h]蒽      | 1.5        |
| 29  | 茚并[1,2,3-c,d]芘 | 15         |
| 30* | 芘              | 7530       |
| 31* | 芴              | 10000      |
| 32* | 苊              | 15100      |
| 33* | <b>苊烯</b>      | 14300      |
| 34* | 苯并[g,h,i]芘     | 7140       |
| 35* | 荧蒽             | 10000      |
| 36* | 菲              | 7140       |
| 37* | 蒽              | 7530       |
| 38* | 氟化物            | 17000      |

注: 带\*的指标表示《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)未对该项目做限值要求,根据《建设用地土壤污染风险评估技术导则》(HJ25.3-2019)推导出来的值。

### 4.4.2 地下水风险筛选值

根据《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019),本项目地下水的评价优先采用《地下水质量标准》(GB/T14848-2017)中 III 类标准,对于《地下水质量标准》(GB/T 14848-2017)没有涉及的污染物,参照执行《生活饮用水卫生标准》(GB5749-2022)中的相应标准限值。对于以上标准中均缺失的污染物,筛选值则采用《建设用地土壤污染风险评估技术导则》(HJ25.3-2019)默认参数和《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)编制说明中相关参数推导的值作为这些指标的风险评价筛选值。本次自行监测采用的地下水风险筛选值详见下表。

表 4.4-2 地块地下水污染物风险评价筛选值

| 序号 | 检测项目       | 《地下水质量标准》<br>(GB/T14848-2017)III 类标准 | 单位   |
|----|------------|--------------------------------------|------|
| 1  | 耗氧量        | ≤3.0                                 | mg/L |
| 2  | 氨氮 (以 N 计) | ≤0.50                                | mg/L |
| 3  | 氟化物        | ≤1.0                                 | mg/L |
| 4  | 锰          | ≤0.10                                | mg/L |
| 5  | 砷          | ≤0.01                                | mg/L |
| 6  | 汞          | ≤0.001                               | mg/L |
| 7  | 铅          | ≤0.01                                | mg/L |
| 8  | 镉          | ≤0.005                               | mg/L |
| 9  | 铜          | ≤1.00                                | mg/L |

| 序号  | 检测项目           | 《地下水质量标准》               | 单位   |  |
|-----|----------------|-------------------------|------|--|
| /12 | 1200777 [      | (GB/T14848-2017)III 类标准 | , ,  |  |
| 10* | 总铬             |                         | mg/L |  |
| 11  | 镍              | ≤0.02                   | mg/L |  |
| 12* | 锡              | 15.8                    | mg/L |  |
| 13  | 锑              | ≤0.005                  | mg/L |  |
| 14  | 锌              | ≤1.00                   | mg/L |  |
| 15  | 苯              | ≤10.0                   | μg/L |  |
| 16  | 甲苯             | ≤700                    | μg/L |  |
| 17  | 乙苯             | ≤300                    | μg/L |  |
| 18  | 间,对-二甲苯        | <500                    | /I   |  |
| 19  | 邻-二甲苯          | ≤500                    | μg/L |  |
| 20  | 苯乙烯            | ≤20.0                   | μg/L |  |
| 21* | 邻苯二甲酸二正辛酯      | 0.263                   | mg/L |  |
| 22  | 邻苯二甲酸二(2-乙基己   | <0.0                    | /I   |  |
| 22  | 基)酯            | ≤8.0                    | μg/L |  |
| 23* | 邻苯二甲酸丁基苄酯      | 0.0848                  | mg/L |  |
| 24* | 可萃取性石油烃        | 1.05                    | ma/I |  |
| 24  | (C10-C40)      | 1.03                    | mg/L |  |
| 25* | 苯并(a)蒽         | 0.00161                 | mg/L |  |
| 26  | 苯并(a)芘         | ≤0.01                   | μg/L |  |
| 27  | 苯并(b)荧蒽        | ≤4.0                    | μg/L |  |
| 28* | 苯并(k)荧蒽        | 0.0161                  | mg/L |  |
| 29* | 薜              | 0.161                   | mg/L |  |
| 30* | 二苯并(a,h)蒽      | 0.000161                | mg/L |  |
| 31* | 茚并(1,2,3-c,d)芘 | 0.00161                 | mg/L |  |
| 32  | 萘              | ≤600                    | μg/L |  |
| 33* | 芘              | 0.79                    | mg/L |  |
| 34* | 芴              | 1.05                    | mg/L |  |
| 35* | 苊              | 1.58                    | mg/L |  |
| 36* | 苊烯             | 1.58                    | mg/L |  |
| 37* | 苯并[g,h,i]芘     | 0.79                    | mg/L |  |
| 38  | 荧蒽             | ≤240                    | μg/L |  |
| 39* | 菲              | 0.79                    | mg/L |  |
| 40  | 蒽              | ≤1800                   | μg/L |  |

注:带\*的指标表示《地下水质量标准》(GB/T14848-2017)和《生活饮用水卫生标准》(GB5749-2022)均未对该项目做限值要求,根据《建设用地土壤污染风险评估技术导则》(HJ25.3-2019)推导出来的值。

# 4.4.3 风险控制值推导过程

本次调查使用浙江大学环境健康研究所、生态环境部南京环境科学研究所开

发的"污染场地风险评估电子表格(2022-05-31)"对调查地块土壤和地下水进行健康与环境风险评估工作。该软件可以计算不同污染场地的风险控制值和筛选值,为污染场地筛选和修复提供指导。该软件依据的标准是《建设用地土壤污染风险评估技术导则》(HJ25.3-2019),基于中国标准参数和数学模型。本次调查使用该软件计算的部分土壤及地下水指标的第二类用地风险筛选值见表 4.4-3。

表 4.4-3 部分土壤和地下水污染风险控制值(第二类用地)

| 污染介质                   | 监测指标           | 筛选值          | 取值来源                           |
|------------------------|----------------|--------------|--------------------------------|
|                        | 氟化物            | 17000        |                                |
|                        | 总铬             | 3740         |                                |
|                        | 锰              | 16600        |                                |
|                        | 锌              | 134000       |                                |
|                        | 锡              | 268000       |                                |
| 土壤(筛选值单                | 芘              | 7530         |                                |
| 位: mg/kg)              | 芴              | 10000        |                                |
| <u>  111.</u> Hig/Kg / | 苊              | 15100        |                                |
|                        | <b>苊烯</b>      | 14300        |                                |
|                        | 苯并[g,h,i]菲     | 7140         | -                              |
|                        | 荧蔥<br>菲        | 10000        | -                              |
|                        | 蔥              | 7140<br>7530 | -                              |
|                        |                |              | -                              |
|                        | 总铬             | 39.5         |                                |
|                        | 锡              | 15.8         | <br>- 污染场地风险评估电子表格             |
|                        | 可萃取性石油烃        | 1.05         | (2022-05-31)(浙江大学环境健康研究所、生态环境部 |
|                        | (C10-C40)      | 1.03         |                                |
|                        | 苯并(a)蒽         | 0.00161      | 南京环境科学研究所)                     |
|                        | 苯并(k)荧蒽        | 0.0161       |                                |
|                        | 薜              | 0.161        |                                |
| <br>  地下水(筛选值          | 二苯并(a,h)蒽      | 0.000161     |                                |
| 地下水(炉起恒<br>  单位: mg/L) | 茚并(1,2,3-c,d)芘 | 0.00161      |                                |
| 中世: mg/L)              | 芘              | 0.79         |                                |
|                        | 芴              | 1.05         |                                |
|                        | 苊              | 1.58         |                                |
|                        | 苊烯             | 1.58         |                                |
|                        | 苯并[g,h,i]菲     | 0.79         |                                |
|                        | 菲              | 0.79         |                                |
|                        | 邻苯二甲酸二正辛酯      | 0.263        |                                |
|                        | 邻苯二甲酸丁基苄基酯     | 0.0848       |                                |

本次推导使用的参数优先采用地块所在区域和广东省污染地块风险评估模型参数推荐值(粤环办[2020]67号表 3-3),缺乏本地区域性参数值的,参考《建设用地土壤污染风险评估技术导则》(HJ25.3-2019)附录 G 默认参数,风险评估模型参数及推荐值见表 4.4-4,需要计算的指标的理化性质参数和毒理性质参

数见表 4.4-5 和表 4.4-6。基于以上信息,采用"污染场地风险评估技术导则电子表格(2022-05-31)"计算所得的第二类用地的暴露量和风险控制值分别见表 4.4-7 和表 4.4-8。

表 4.4-4 风险评估模型参数及推荐值(广东省污染地块风险评估模型参数及导则 HJ25.3-2019 附录 G)

| 符号                   |                        | 単位                                 | 第二类用地    |
|----------------------|------------------------|------------------------------------|----------|
| d                    | <b>含义</b><br>表层污染土壤层厚度 | cm                                 | 50       |
| L <sub>s</sub>       | 下层污染土壤层埋深              | cm                                 | 50       |
| d <sub>sub</sub>     | 下层污染土壤层垤冻              | cm                                 | 100      |
| A                    |                        | cm <sup>2</sup>                    | 16000000 |
|                      |                        |                                    |          |
| L <sub>gw</sub>      | 地下水埋深                  | cm                                 | 300      |
| f <sub>om</sub>      | 土壤有机质含量                | g·kg-1                             | 15       |
| ρ <sub>b</sub>       | 土壤容重                   | kg·dm <sup>-3</sup>                | 1.5      |
| P <sub>ws</sub>      | 土壤水分                   | kg·kg-1                            | 0.2      |
| ρ <sub>s</sub>       | 土壤颗粒密度                 | kg·dm <sup>-3</sup>                | 2.65     |
| PM <sub>10</sub>     | 空气中可吸入颗粒物含量            | mg·m <sup>-3</sup>                 | 0.05     |
| Uair                 | 混合区大气流速风速              | cm·s <sup>-1</sup>                 | 220      |
| $\delta_{air}$       | 混合区高度                  | cm                                 | 200      |
| W                    | 污染源区宽度                 | cm                                 | 4000     |
| h <sub>cap</sub>     | 土壤地下水交界处毛管层厚度          | cm                                 | 5        |
| h <sub>v</sub>       | 非饱和土层厚度                | cm                                 | 295      |
| $\theta_{acap}$      | 毛细管层孔隙空气体积比            | 无量纲                                | 0.038    |
| $\theta_{ m wcap}$   | 毛细管层孔隙水体积比             | 无量纲                                | 0.342    |
| $U_{gw}$             | 地下水达西(Darcy)速率         | cm·a <sup>-1</sup>                 | 2500     |
| $\delta_{ m gw}$     | 地下水混合区厚度               | cm                                 | 200      |
| I                    | 土壤中水的入渗速率              | cm·a <sup>-1</sup>                 | 30       |
| $\theta_{acrack}$    | 地基裂隙中空气体积比             | 无量纲                                | 0.26     |
| $\theta_{ m wcrack}$ | 地基裂隙中水体积比              | 无量纲                                | 0.12     |
| L <sub>crack</sub>   | 室内地基厚度                 | cm                                 | 35       |
| L <sub>B</sub>       | 室内空间体积与气态污染物入渗面积之比     | cm                                 | 300      |
| ER                   | 室内空气交换速率               | 次·d-1                              | 20       |
| η                    | 地基和墙体裂隙面积所占面积          | 无量纲                                | 0.0005   |
| τ                    | 气态污染物入侵持续时间            | a                                  | 25       |
| dP                   | 室内室外气压差                | g·cm <sup>-1</sup> ·S <sup>2</sup> | 0        |
| Kv                   | 土壤透性系数                 | cm <sup>2</sup>                    | 1.00E-08 |
| Zcrack               | 室内地面到地板底部厚度            | cm                                 | 35       |
| Xcrack               | 室内地板周长                 | cm                                 | 3400     |
| Ab                   | 室内地板面积                 | cm <sup>2</sup>                    | 700000   |
| EDa                  | 成人暴露期                  | a                                  | 25       |
| EDc                  | 儿童暴露期                  | a                                  | /        |
| EFa                  | 成人暴露频率                 | d·a⁻¹                              | 250      |
| EFc                  | 儿童暴露频率                 | d·a <sup>-1</sup>                  | /        |

| EFIa  | 成人室内暴露频率                        | d·a⁻¹                           | 187.5    |
|-------|---------------------------------|---------------------------------|----------|
| EFIc  | 儿童室内暴露频率                        | d·a⁻¹                           | /        |
| EFOa  | 成人室外暴露频率                        | d·a⁻¹                           | 62.5     |
| EFOc  | 儿童室外暴露频率                        | d·a⁻¹                           | /        |
| BWa   | 成人平均体重                          | kg                              | 61.3     |
| BWc   | 儿童平均体重                          | kg                              | /        |
| На    | 成人平均身高                          | cm                              | 162      |
| Нс    | 儿童平均身高                          | cm                              | /        |
| DAIRa | 成人每日空气呼吸量                       | m <sup>3</sup> ·d <sup>-1</sup> | 14.5     |
| DAIRc | 儿童每日空气呼吸量                       | m <sup>3</sup> ·d <sup>-1</sup> | /        |
| GWCRa | 成人每日饮用水量                        | L· <b>d</b> -1                  | 1.7      |
| GWCRc | 儿童每日饮用水量                        | L·d <sup>-1</sup>               | /        |
| OSIRa | 成人每日摄入土壤量                       | mg·d <sup>-1</sup>              | 100      |
| OSIRc | 儿童每日摄入土壤量                       | mg∙d <sup>-1</sup>              | /        |
| Ev    | 每日皮肤接触事件频率                      | 次·d-1                           | 1        |
| fspi  | 室内空气中来自土壤的颗粒物所占比例               | 无量纲                             | 0.8      |
| fspo  | 室内空气中来自土壤的颗粒物所占比例               | 无量纲                             | 0.8      |
| SAF   | 暴露于土壤的参考剂量分配比例(SVOCs 和重金属)      | 无量纲                             | 0.5      |
| WAF   | 暴露于地下水的参考剂量分配比例(SVOCs 和重金<br>属) | 无量纲                             | 0.5      |
| SERa  | 成人暴露皮肤所占体表面积比                   | 无量纲                             | 0.18     |
| SERc  | 儿童暴露皮肤所占体表面积比                   | 无量纲                             | 0        |
| SSARa | 成人皮肤表面土壤粘附系数                    | mg·cm <sup>-2</sup>             | 0.2      |
| SSARc | 儿童皮肤表面土壤粘附系数                    | mg·cm <sup>-2</sup>             | /        |
| PIAF  | 吸入土壤颗粒物在体内滞留比例                  | 无量纲                             | 0.75     |
| ABSo  | 经口摄入吸收因子                        | 无量纲                             | 1        |
| ACR   | 单一污染物可接受致癌风险                    | 无量纲                             | 0.000001 |
| AHQ   | 单一污染物可接受危害熵                     | 无量纲                             | 1        |
| ATca  | 致癌效应平均时间                        | d                               | 27920    |
| ATnc  | 非致癌效应平均时间                       | d                               | 9125     |
| SAF   | 暴露于土壤的参考剂量分配比例(VOCs)            | 无量纲                             | 0.33     |
| WAF   | 暴露于地下水的参考剂量分配比例(VOCs)           | 无量纲                             | 0.33     |
| tc    | 儿童次经皮肤接触的时间                     | h                               | 0.5      |
| ta    | 成人次经皮肤接触的时间                     | h                               | 0.5      |

### 表 4.4-5 理化性质参数

| 接受 中文名   英文名   大学   大学   大学   大学   大学   大学   大学   大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |           | 理化性质                    |            | 亨利         | 常数       | 空气中排                   | 广散系数          | 水中扩散                   | 效系数           | 土壤有机碳水分配                |      | 水洋       | 容解度      | 皮肤渗透<br>系数 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|-------------------------|------------|------------|----------|------------------------|---------------|------------------------|---------------|-------------------------|------|----------|----------|------------|
| Total Petroleum   Hydrocarbons (C10-C40)                                                                                                                     | 序号 | 中文名       | 英文名                     | CAS 编号     | H'         | 数据来源     | Da(cm <sup>2</sup> /s) | 数据来源          | Dw(cm <sup>2</sup> /s) | 数据来源          | Koc(cm <sup>3</sup> /g) | 数据来源 | S (mg/L) | 数据来源     | Kp(cm/hr)  |
| Colo-C40   Hydrocarbons (C10-C40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  | 5-铬 (三价)  | Chromium, III           | 16065-83-1 | -          | -        | -                      | -             | -                      | -             | -                       | -    | -        | -        | 0.001      |
| Sex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2  |           |                         |            | -          | -        | -                      | -             | -                      | -             | -                       | -    | -        | -        | -          |
| Benzo(k)fluoranthene   207-08-9   0.0000239   EPI   0.046   WATER9   0.00000556   WATER9   181000   EPI   0.002   EPI   0.002   EPI   0.02   EPI                                                                                                                   | 3  | 58-苯并(a)蒽 | Benzo(a)anthracene      | 56-55-3    | 0.000491   | EPI      | 0.0261138              | (U.S.<br>EPA, | 6.7495E-06             | (U.S.<br>EPA, | 177000                  | EPI  | 0.0094   | EPI      | 0.47       |
| 66   63-二苯并(a, h)應                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4  | ` ' '     | Benzo(k)fluoranthene    | 207-08-9   | 0.0000239  | EPI      | 0.0476                 | WATER9        | 0.00000556             | WATER9        | 587000                  | EPI  | 0.0008   | EPI      | -          |
| Bibenzo(a, h)amthracene   S3-70-3   0.00000576   EPI   0.0446   WATER9   0.00000521   WATER9   1910000   EPI   0.00249   EPI   0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | 62-屈      | Chrysene                | 218-01-9   | 0.000214   | EPI      | 0.0261                 | WATER9        | 0.00000675             | WATER9        | 181000                  | EPI  | 0.002    | EPI      | 0.47       |
| 8         66-ē申井<br>(1,2,3-cd)芘         Indeno(1,2,3-cd)pyrene         193-39-5         0.0000142         PHYSPROP         0.0448         WATER9         0.00000523         WATER9         1951000         EPI         0.00019         PHYSPROP           9         65-5万         Fluorene         86-73-7         0.00393         EPI         0.044         WATER9         0.00000789         WATER9         9160         EPI         1.69         EPI           10         56-億         Acenaphthene         83-32-9         0.00752         EPI         0.0506         WATER9         0.00000833         WATER9         5030         EPI         3.9         EPI           11         149-億烯         acenaphthylene         208-96-8         0.00474         TX19         0.0439         TX19         0.00000706         TX19         6920         TX18         3.93         TX19           12         503-征<br>(Non-diet)         Manganese         7439-96-5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6  |           | Dibenzo(a, h)anthracene | 53-70-3    | 0.00000576 | EPI      | 0.0446                 | WATER9        | 0.00000521             | WATER9        | 1910000                 | EPI  | 0.00249  | EPI      |            |
| Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7  | 68-芘      | Pyrene                  | 129-00-0   | 0.000487   | EPI      | 0.0278                 | WATER9        | 0.00000725             | WATER9        | 54300                   | EPI  | 0.135    | EPI      | -          |
| Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Tab                                                                                                                  | 8  |           | Indeno(1,2,3-cd)pyrene  | 193-39-5   | 0.0000142  | PHYSPROP | 0.0448                 | WATER9        | 0.00000523             | WATER9        | 1951000                 | EPI  | 0.00019  | PHYSPROP | 1          |
| 11   149-苊烯   acenaphthylene   208-96-8   0.00474   TX19   0.0439   TX19   0.00000706   TX19   6920   TX18   3.93   TX19   122   503-६६                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9  | 65-芴      | Fluorene                | 86-73-7    | 0.00393    | EPI      | 0.044                  | WATER9        | 0.00000789             | WATER9        | 9160                    | EPI  | 1.69     | EPI      |            |
| 12   503-锰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 | 56-苊      | Acenaphthene            | 83-32-9    | 0.00752    | EPI      | 0.0506                 | WATER9        | 0.00000833             | WATER9        | 5030                    | EPI  | 3.9      | EPI      | -          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 | 149-苊烯    | acenaphthylene          | 208-96-8   | 0.00474    | TX19     | 0.0439                 | TX19          | 0.00000706             | TX19          | 6920                    | TX18 | 3.93     | TX19     | -          |
| 14       19-锌       Zinc       7440-66-6       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 | _         | Manganese               | 7439-96-5  | -          | -        | -                      | -             | -                      | -             | -                       | -    | -        | -        | -          |
| 15   423-总氟化物   Fluoride   16984-48-8   -   -   -   -   1.69   EPI     120-邻苯二甲 酸苄丁酯   Butyl benzyl phthalate, BBP   85-68-7   0.0000515   EPI   0.0208   WATER9   0.00000517   WATER9   7160   EPI   2.69   EPI     17   123-邻苯二甲 酸二正辛酯   Di-n-octyl phthalate, DNOP   117-84-0   0.000105   EPI   0.0356   WATER9   0.00000415   WATER9   141000   EPI   0.02   EPI   18   64-荧蒽   Fluoranthene   206-44-0   0.000362   EPI   0.0276   WATER9   0.00000718   WATER9   55500   EPI   0.26   EPI   19   129-苯并 (g,h,i)芘   Benzo(g,h,i)perylene   191-24-2   0.00000582   TX18   0.049   TX18   0.0000565   TX18   1580000   TX18   0.00026   TX19   TX19   129-苯并 (g,h,i)芘   Di-n-octyl phthalate, BBN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13 | 13-锡      | Tin                     | 7440-31-5  | -          | -        | -                      | -             | -                      | -             | -                       | -    | -        | -        | 0.001      |
| 16     120-邻苯二甲 酸苄丁酯     Butyl benzyl phthalate, BBP     85-68-7     0.0000515     EPI     0.0208     WATER9     0.00000517     WATER9     7160     EPI     2.69     EPI       17     123-邻苯二甲 酸二正辛酯     Di-n-octyl phthalate, DNOP     117-84-0     0.000105     EPI     0.0356     WATER9     0.00000415     WATER9     141000     EPI     0.02     EPI       18     64-荧蒽     Fluoranthene     206-44-0     0.000362     EPI     0.0276     WATER9     0.00000718     WATER9     55500     EPI     0.26     EPI       19     129-苯并(g,h,i)芘     Benzo(g,h,i)perylene     191-24-2     0.00000582     TX18     0.049     TX18     0.0000565     TX18     1580000     TX18     0.00026     TX19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 |           | Zinc                    | 7440-66-6  | -          | -        | -                      | -             | -                      | -             | -                       | -    | -        | -        | 0.0006     |
| BBP   BBP   BS-68-7   0.0000515   EPI   0.0208   WATER9   0.00000517   WATER9   7160   EPI   2.69   EPI   123-邻苯二甲   Di-n-octyl phthalate, DNOP   117-84-0   0.000105   EPI   0.0356   WATER9   0.00000415   WATER9   141000   EPI   0.02   EPI   18   64-茨蒽   Fluoranthene   206-44-0   0.000362   EPI   0.0276   WATER9   0.00000718   WATER9   55500   EPI   0.26   EPI   129-苯并 (g,h,i)芘   Benzo(g,h,i)perylene   191-24-2   0.00000582   TX18   0.049   TX18   0.0000565   TX18   1580000   TX18   0.00026   TX19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 |           | Fluoride                | 16984-48-8 |            | -        |                        | -             |                        | -             |                         | -    | 1.69     | EPI      | -          |
| 17         酸二正辛酯         DNOP         117-84-0         0.000105         EPI         0.0356         WATER9         0.00000415         WATER9         141000         EPI         0.02         EPI           18         64-炭葱         Fluoranthene         206-44-0         0.000362         EPI         0.0276         WATER9         0.00000718         WATER9         55500         EPI         0.26         EPI           19         129-苯并<br>(g,h,i)芘         Benzo(g,h,i)perylene         191-24-2         0.00000582         TX18         0.049         TX18         0.0000565         TX18         1580000         TX18         0.00026         TX19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 |           |                         | 85-68-7    | 0.0000515  | EPI      | 0.0208                 | WATER9        | 0.00000517             | WATER9        | 7160                    | EPI  | 2.69     | EPI      | -          |
| 19 $\frac{129-x}{(g,h,i)}$ 花     Benzo(g,h,i)perylene     191-24-2     0.00000582     TX18     0.049     TX18     0.0000565     TX18     1580000     TX18     0.00026     TX19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 |           |                         | 117-84-0   | 0.000105   | EPI      | 0.0356                 | WATER9        | 0.00000415             | WATER9        | 141000                  | EPI  | 0.02     | EPI      | -          |
| 19   $(g,h,i)$   $  Eenzo(g,h,i)$   $  Benzo(g,h,i)$   $  Benzo(g$ | 18 | 64-荧蒽     | Fluoranthene            | 206-44-0   | 0.000362   | EPI      | 0.0276                 | WATER9        | 0.00000718             | WATER9        | 55500                   | EPI  | 0.26     | EPI      | 0.22       |
| 20   128-菲   phenanthrene   85-01-8   0.0054   TX19   0.0333   TX19   0.00000747   TX19   14125.37545   TX19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 |           | Benzo(g,h,i)perylene    | 191-24-2   | 0.00000582 | TX18     | 0.049                  | TX18          | 0.0000565              | TX18          | 1580000                 | TX18 | 0.00026  | TX19     | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 | 128-菲     | phenanthrene            | 85-01-8    | 0.0054     | TX19     | 0.0333                 | TX19          | 0.00000747             | TX19          | 14125.37545             | TX19 | -        | -        | 0.14       |

| 21 | 57-蒽    | Anthracene | 120-12-7 | 0.00227 | EPI | 0.039 | WATER9 | 0.00000785 | WATER9 | 16400 | EPI | 0.0434 | EPI | - |
|----|---------|------------|----------|---------|-----|-------|--------|------------|--------|-------|-----|--------|-----|---|
|    | - , ,_, |            |          |         |     | 0.000 |        |            |        |       |     |        |     |   |

### 表 4.4-6 毒理性质参数

|    |                       | 本 4.4+0 毎年   日次 多数   日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 |            |                    |       |              |       |               |      |                         |      |                |      |               |       |
|----|-----------------------|-------------------------------------------------------------|------------|--------------------|-------|--------------|-------|---------------|------|-------------------------|------|----------------|------|---------------|-------|
|    |                       | 毒理性质                                                        |            | 经口摄入致报<br>  子      | 民率保証  | 呼吸吸入单位到      | 癌因子   | 经口摄入参考        | 剂量   | 呼吸吸入参                   | 考浓度  | 消化道吸収<br>  子   |      | 皮肤吸收          | 因子    |
| 序号 | 中文名                   | 英文名                                                         | CAS 编号     | Sfo(mg/kg-d)<br>-1 | 数据来 源 | IUR(mg/m³)-1 | 数据来 源 | RfDo(mg/kg-d) | 数据来源 | RfC(mg/m <sup>3</sup> ) | 数据来源 | ABSgi(无<br>量纲) | 数据来源 | ABSd(无<br>量纲) | 数据 来源 |
| 1  | 5-铬 (三价)              | Chromium, III                                               | 16065-83-1 | -                  | -     | -            | -     | 1.5           | I    | 0.00014                 | T    | 0.013          | RSL  | -             | -     |
| 2  | 836-总石油烃<br>(C10-C40) | Total Petroleum Hydrocarbons (C10-C40)                      |            | -                  | -     | -            | -     | 0.04          | НКС  | -                       | -    | 1              | HIKC | 0.5           | нкс   |
| 3  | 58-苯并(a)蒽             | Benzo(a)anthracen<br>e                                      | 56-55-3    | 0.1                | RSL   | 0.06         | RSL   | -             | -    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 4  | 61-苯并(k)荧<br>蔥        | Benzo(k)fluoranth<br>ene                                    | 207-08-9   | 0.01               | RSL   | 0.006        | RSL   | -             | -    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 5  | 62-屈                  | Chrysene                                                    | 218-01-9   | 0.001              | RSL   | 0.006        | RSL   | -             | -    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 6  | 63-二苯并(a,<br>h)蒽      | Dibenzo(a, h)anthracene                                     | 53-70-3    | 1                  | RSL   | 0.6          | RSL   | -             | -    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 7  | 68-芘                  | Pyrene                                                      | 129-00-0   | -                  | -     | -            | -     | 0.03          | I    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 8  | 66-茚并<br>(1,2,3-cd)芘  | Indeno(1,2,3-cd)p<br>yrene                                  | 193-39-5   | 0.1                | RSL   | 0.06         | RSL   | -             | -    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 9  | 65-芴                  | Fluorene                                                    | 86-73-7    | -                  | -     | -            | -     | 0.04          | I    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 10 | 56-苊                  | Acenaphthene                                                | 83-32-9    | -                  | ı     | 1            | -     | 0.06          | I    | 1                       | -    | 1              | RSL  | 0.13          | RSL   |
| 11 | 149-苊烯                | acenaphthylene                                              | 208-96-8   | -                  | -     | 1            | -     | 0.06          | Т    | 1                       | -    | 0.89           | TX18 | 0.13          | TX18  |
| 12 | 503-锰<br>(Non-diet)   | Manganese                                                   | 7439-96-5  | -                  | -     | -            | -     | 0.14          | I    | 0.00084                 | Т    | 1              | RSLs | -             | -     |
| 13 | 13-锡                  | Tin                                                         | 7440-31-5  | -                  | -     | 1            | -     | 0.6           | RSL  | •                       | -    | 1              | RSL  | -             | -     |
| 14 | 19-锌                  | Zinc                                                        | 7440-66-6  | -                  | -     | -            | -     | 0.3           | I    | -                       | -    | 1              | RSL  | -             | -     |
| 15 | 423-总氟化物              | Fluoride                                                    | 16984-48-8 | -                  | -     | -            | -     | 0.04          | RSL  | 0.013                   | RSL  | 1              | RSL  | -             | -     |
| 16 | 120-邻苯二甲<br>酸苄丁酯      | Butyl benzyl<br>phthalate, BBP                              | 85-68-7    | 0.0019             | P     | -            | -     | 0.2           | I    | -                       | -    | 1              | RSL  | 0.1           | RSL   |
| 17 | 123-邻苯二甲<br>酸二正辛酯     | Di-n-octyl<br>phthalate, DNOP                               | 117-84-0   | -                  | -     | 1            | -     | 0.01          | P    | -                       | -    | 1              | RSL  | 0.1           | RSL   |
| 18 | 64-荧蒽                 | Fluoranthene                                                | 206-44-0   | -                  | -     | -            | -     | 0.04          | I    | -                       | -    | 1              | RSL  | 0.13          | RSL   |
| 19 | 129-苯并<br>(g,h,i)芘    | Benzo(g,h,i)peryle<br>ne                                    | 191-24-2   | -                  | -     | -            | -     | 0.03          | TX18 | -                       | -    | 0.89           | TX18 | 0.13          | TX18  |

| 20 | 128-菲 | phenanthrene | 85-01-8  | - | - | - | - | 0.03 | TX18 | - | - | 0.89 | TX18 | 0.13 | TX18 |
|----|-------|--------------|----------|---|---|---|---|------|------|---|---|------|------|------|------|
| 21 | 57-蒽  | Anthracene   | 120-12-7 | - | - | - | - | 0.3  | I    | - | - | 1    | RSL  | 0.13 | RSL  |

# 表 4.4-7 暴露量

|    | - <b>八 7.17-</b> / <b> </b> |                                              |            |               |                   |          |             |                                 |          |                            |            |             |          |
|----|-----------------------------|----------------------------------------------|------------|---------------|-------------------|----------|-------------|---------------------------------|----------|----------------------------|------------|-------------|----------|
|    |                             |                                              |            |               |                   |          |             |                                 | 致癌       |                            |            |             |          |
|    |                             |                                              |            |               |                   | 土壤(kg 土均 | 襄·kg-1 体重·d | -1)                             |          | 地下を                        | 水(L 地下水·kg | g-1 体重·d-1) |          |
|    | 第二类                         | 关用地-暴露量                                      |            | 经口摄入土<br>壤颗粒物 | 皮肤接触<br>土壤颗粒<br>物 | 吸入土壤颗粒   | 中来自表层土      | 吸入室外空气<br>中来自下层土<br>壤的气态污染<br>物 | 中来自下层土   | 吸入室外空气中<br>来自地下水的气<br>态污染物 |            | 皮肤接触地下水     | 饮用地下水    |
| 序号 | 中文名                         | 英文名                                          | CAS 编号     | OISERca       | DCSERca           | PISERca  | IOVERca1    | IOVERca2                        | IIVERca1 | IOVERca3                   | IIVERca2   | DGWERca     | CGWERca  |
| 1  | 5-铬 (三价)                    | Chromium, III                                | 16065-83-1 | 3.65E-07      | -                 | 1.44E-09 | -           | -                               | -        | -                          | -          | 1.31E-11    | 6.21E-03 |
| 2  | 836-总石油烃<br>(C10-C40)       | Total Petroleum<br>Hydrocarbons<br>(C10-C40) |            | 3.65E-07      | 1.10E-06          | 1.44E-09 | -           | -                               | -        | -                          | -          | -           | 6.21E-03 |
| 3  | 58-苯并(a)蒽                   | Benzo(a)anthra cene                          | 56-55-3    | 3.65E-07      | 2.86E-07          | 1.44E-09 | 1.28E-09    | 1.13E-11                        | 5.44E-12 | 2.97E-09                   | 8.45E-09   | 6.18E-09    | 6.21E-03 |
| 4  | 61-苯并(k)荧<br>蔥              | Benzo(k)fluora<br>nthene                     | 207-08-9   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 6.07E-10    | 2.52E-12                        | 1.92E-13 | 2.20E-09                   | 9.94E-10   | -           | 6.21E-03 |
| 5  | 62-屈                        | Chrysene                                     | 218-01-9   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 1.23E-09    | 1.04E-11                        | 2.43E-12 | 2.78E-09                   | 3.88E-09   | 6.18E-09    | 6.21E-03 |
| 6  | 63-二苯并(a,<br>h)蒽            | Dibenzo(a, h)anthracene                      | 53-70-3    | 3.65E-07      | 2.86E-07          | 1.44E-09 | 3.24E-10    | 7.19E-13                        | 2.47E-14 | 2.04E-09                   | 4.17E-10   | -           | 6.21E-03 |
| 7  | 68-芘                        | Pyrene                                       | 129-00-0   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 2.40E-09    | 3.96E-11                        | 1.87E-11 | 3.18E-09                   | 8.93E-09   | -           | 6.21E-03 |
| 8  | 66-茚并<br>(1,2,3-cd)芘        | Indeno(1,2,3-cd<br>)pyrene                   | 193-39-5   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 3.22E-10    | 7.10E-13                        | 3.83E-14 | 2.06E-09                   | 6.59E-10   | 1.31E-08    | 6.21E-03 |
| 9  | 65-芴                        | Fluorene                                     | 86-73-7    | 3.65E-07      | 2.86E-07          | 1.44E-09 | 9.06E-09    | 5.64E-10                        | 1.36E-09 | 7.58E-09                   | 1.07E-07   | -           | 6.21E-03 |
| 10 | 56-苊                        | Acenaphthene                                 | 83-32-9    | 3.65E-07      | 2.86E-07          | 1.44E-09 | 1.61E-08    | 1.78E-09                        | 5.42E-09 | 1.30E-08                   | 2.34E-07   | -           | 6.21E-03 |
| 11 | 149-苊烯                      | acenaphthylene                               | 208-96-8   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 1.08E-08    | 8.05E-10                        | 2.16E-09 | 8.15E-09                   | 1.29E-07   | -           | 6.21E-03 |
| 12 | 503-锰<br>(Non-diet)         | Manganese                                    | 7439-96-5  | 3.65E-07      | -                 | 1.44E-09 | -           | -                               | -        | -                          | -          | -           | 6.21E-03 |
| 13 | 13-锡                        | Tin                                          | 7440-31-5  | 3.65E-07      | -                 | 1.44E-09 | -           | -                               | -        | -                          | -          | 1.31E-11    | 6.21E-03 |
| 14 | 19-锌                        | Zinc                                         | 7440-66-6  | 3.65E-07      | -                 | 1.44E-09 | -           | -                               | -        | -                          | -          | 7.89E-12    | 6.21E-03 |
| 15 | 423-总氟化物                    | Fluoride                                     | 16984-48-8 | 3.65E-07      | -                 | 1.44E-09 | -           | -                               | -        | -                          | -          | -           | 6.21E-03 |
| 16 | 120-邻苯二甲<br>酸苄丁酯            | Butyl benzyl phthalate, BBP                  | 85-68-7    | 3.65E-07      | 2.20E-07          | 1.44E-09 | 5.29E-09    | 1.92E-10                        | 1.47E-11 | 2.04E-09                   | 9.33E-10   | -           | 6.21E-03 |
| 17 | 123-邻苯二甲                    | Di-n-octyl                                   | 117-84-0   | 3.65E-07      | 2.20E-07          | 1.44E-09 | 1.09E-09    | -                               | 2.08E-12 | 1.72E-09                   | 2.58E-09   | -           | 6.21E-03 |

|    | 酸二正辛酯                 | phthalate,<br>DNOP                           |            |               |                   |          |              |          |                                 |                            |            |             |          |
|----|-----------------------|----------------------------------------------|------------|---------------|-------------------|----------|--------------|----------|---------------------------------|----------------------------|------------|-------------|----------|
| 18 | 64-荧蒽                 | Fluoranthene                                 | 206-44-0   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 2.33E-09     | 3.72E-11 | 1.37E-11                        | 3.06E-09                   | 6.69E-09   | 2.89E-09    | 6.21E-03 |
| 19 | 129-苯并(g,h,i)<br>芘    | Benzo(g,h,i)per<br>ylene                     | 191-24-2   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 1.17E-09     | 9.39E-12 | 2.10E-13                        | 2.20E-08                   | 2.92E-09   | -           | 6.21E-03 |
| 20 | 128-菲                 | phenanthrene                                 | 85-01-8    | 3.65E-07      | 2.86E-07          | 1.44E-09 | 7.31E-09     | 3.67E-10 | 9.16E-10                        | 7.59E-09                   | 1.11E-07   | 1.84E-09    | 6.21E-03 |
| 21 | 57-蒽                  | Anthracene                                   | 120-12-7   | 3.65E-07      | 2.86E-07          | 1.44E-09 | 5.69E-09     | 2.22E-10 | 3.91E-10                        | 5.38E-09                   | 5.56E-08   | -           | 6.21E-03 |
|    |                       |                                              |            |               |                   |          |              | -        | 非致癌                             |                            |            |             |          |
|    |                       |                                              |            |               |                   |          | 襄·kg-1 体重·d· |          |                                 | 地下を                        | 水(L 地下水 kg | ;-1 体重·d-1) |          |
|    | 第二类                   | 笑用地-暴露量                                      |            | 经口摄入土<br>壤颗粒物 | 皮肤接触<br>土壤颗粒<br>物 |          | 中来自表层土       | 中来自下层土   | 吸入室内空气<br>中来自下层土<br>壤的气态污染<br>物 | 吸入室外空气中<br>来自地下水的气<br>态污染物 |            | 皮肤接触地下水     | 饮用地下水    |
| 序号 | 中文名                   | 英文名                                          | CAS 编号     | OISERnc       | DCSERnc           | PISERnc  | IOVERnc1     | IOVERnc2 | IIVERnc1                        | IOVERnc3                   | IIVERnc2   | DGWERnc     | CGWERnc  |
| 1  | 5-铬 (三价)              | Chromium, III                                | 16065-83-1 | 1.12E-06      | -                 | 4.40E-09 | -            | -        | -                               | -                          | -          | 1.68E-10    | 1.90E-02 |
| 2  | 836-总石油烃<br>(C10-C40) | Total Petroleum<br>Hydrocarbons<br>(C10-C40) |            | 1.12E-06      | 3.37E-06          | 4.40E-09 | -            | -        | -                               | -                          | -          | -           | 1.90E-02 |
| 3  | 58-苯并(a)蒽             | Benzo(a)anthra cene                          | 56-55-3    | 1.12E-06      | 8.76E-07          | 4.40E-09 | 3.93E-09     | 3.46E-11 | 1.66E-11                        | 9.08E-09                   | 2.59E-08   | 7.88E-08    | 1.90E-02 |
| 4  | 61-苯并(k)荧<br>蔥        | Benzo(k)fluora<br>nthene                     | 207-08-9   | 1.12E-06      | 8.76E-07          | 4.40E-09 | 1.86E-09     | 7.72E-12 | 5.88E-13                        | 6.72E-09                   | 3.04E-09   | -           | 1.90E-02 |
| 5  | 62-屈                  | Chrysene                                     | 218-01-9   | 1.12E-06      | 8.76E-07          | 4.40E-09 | 3.76E-09     | 3.17E-11 | 7.45E-12                        | 8.50E-09                   | 1.19E-08   | 7.88E-08    | 1.90E-02 |
| 6  | 63-二苯并(a,<br>h)蒽      | Dibenzo(a, h)anthracene                      | 53-70-3    | 1.12E-06      | 8.76E-07          | 4.40E-09 | 9.91E-10     | 2.20E-12 | 7.57E-14                        | 6.23E-09                   | 1.27E-09   | -           | 1.90E-02 |
| 7  | 68-芘                  | Pyrene                                       | 129-00-0   | 1.12E-06      | 8.76E-07          | 4.40E-09 | 7.35E-09     | 1.21E-10 | 5.73E-11                        | 9.74E-09                   | 2.73E-08   | -           | 1.90E-02 |
| 8  | 66-茚并<br>(1,2,3-cd)芘  | Indeno(1,2,3-cd<br>)pyrene                   | 193-39-5   | 1.12E-06      | 8.76E-07          | 4.40E-09 | 9.85E-10     | 2.17E-12 | 1.17E-13                        | 6.29E-09                   | 2.02E-09   | 1.68E-07    | 1.90E-02 |
| 9  | 65-芴                  | Fluorene                                     | 86-73-7    | 1.12E-06      | 8.76E-07          | 4.40E-09 | 2.77E-08     | 1.72E-09 | 4.16E-09                        | 2.32E-08                   | 3.28E-07   | -           | 1.90E-02 |
| 10 | 56-苊                  | Acenaphthene                                 | 83-32-9    | 1.12E-06      | 8.76E-07          | 4.40E-09 | 4.93E-08     | 5.46E-09 | 1.66E-08                        | 3.99E-08                   | 7.15E-07   | -           | 1.90E-02 |
| 11 | 149-苊烯                | acenaphthylene                               | 208-96-8   | 1.12E-06      | 8.76E-07          | 4.40E-09 | 3.31E-08     | 2.46E-09 | 6.61E-09                        | 2.50E-08                   | 3.93E-07   | -           | 1.90E-02 |
| 12 | 503-锰<br>(Non-diet)   | Manganese                                    | 7439-96-5  | 1.12E-06      | -                 | 4.40E-09 | -            | -        | -                               | -                          | -          | -           | 1.90E-02 |
| 13 | 13-锡                  | Tin                                          | 7440-31-5  | 1.12E-06      | -                 | 4.40E-09 | -            | -        | -                               | -                          | -          | 1.68E-10    | 1.90E-02 |

| 14 | 19-锌               | Zinc                             | 7440-66-6  | 1.12E-06 | -        | 4.40E-09 | -        | -        | -        | -        | -        | 1.01E-10 | 1.90E-02 |
|----|--------------------|----------------------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 15 | 423-总氟化物           | Fluoride                         | 16984-48-8 | 1.12E-06 | -        | 4.40E-09 | -        | -        | -        | -        | -        | -        | 1.90E-02 |
| 16 | 120-邻苯二甲<br>酸苄丁酯   | Butyl benzyl phthalate, BBP      | 85-68-7    | 1.12E-06 | 6.74E-07 | 4.40E-09 | 1.62E-08 | 5.87E-10 | 4.51E-11 | 6.25E-09 | 2.85E-09 | -        | 1.90E-02 |
| 17 | 123-邻苯二甲酸二正辛酯      | Di-n-octyl<br>phthalate,<br>DNOP | 117-84-0   | 1.12E-06 | 6.74E-07 | 4.40E-09 | 3.35E-09 | 2.51E-11 | 6.35E-12 | 5.25E-09 | 7.88E-09 | -        | 1.90E-02 |
| 18 | 64-荧蒽              | Fluoranthene                     | 206-44-0   | 1.12E-06 | 8.76E-07 | 4.40E-09 | 7.13E-09 | 1.14E-10 | 4.19E-11 | 9.37E-09 | 2.05E-08 | 3.69E-08 | 1.90E-02 |
| 19 | 129-苯并(g,h,i)<br>芘 | Benzo(g,h,i)per<br>ylene         | 191-24-2   | 1.12E-06 | 8.76E-07 | 4.40E-09 | 3.58E-09 | 2.87E-11 | 6.42E-13 | 6.74E-08 | 8.95E-09 | -        | 1.90E-02 |
| 20 | 128-菲              | phenanthrene                     | 85-01-8    | 1.12E-06 | 8.76E-07 | 4.40E-09 | 2.24E-08 | 1.12E-09 | 2.80E-09 | 2.32E-08 | 3.41E-07 | 2.35E-08 | 1.90E-02 |
| 21 | 57-蒽               | Anthracene                       | 120-12-7   | 1.12E-06 | 8.76E-07 | 4.40E-09 | 1.74E-08 | 6.80E-10 | 1.20E-09 | 1.65E-08 | 1.70E-07 | -        | 1.90E-02 |

### 表 4.4-8 第二类用地风险管控值

|    |                       |                                           |            |          |           |          | 第二类用地    |           |          |                        |
|----|-----------------------|-------------------------------------------|------------|----------|-----------|----------|----------|-----------|----------|------------------------|
|    | 第二                    | 类用地-风险控制值                                 |            |          | 土壤(mg/kg) |          |          | 地下水(mg/L) |          | 保护地下水的土壤控<br>制值(mg/kg) |
|    |                       |                                           |            | 致癌风险控制值  | 非致癌风险控制值  | 风险控制值    | 致癌风险控制值  | 非致癌风险控制值  | 风险控制值    |                        |
| 序号 | 中文名                   | 英文名                                       | CAS 编号     | RCVSn    | HCVSn     |          | RCVGn    | HCVGn     |          | CVSpgw                 |
| 1  | 5-铬 (三价)              | Chromium, III                             | 16065-83-1 | -        | 3.74E+03  | 3.74E+03 | -        | 3.95E+01  | 3.95E+01 | -                      |
| 2  | 836-总石油烃<br>(C10-C40) | Total Petroleum<br>Hydrocarbons (C10-C40) |            | -        | 4.46E+03  | 4.46E+03 | -        | 1.05E+00  | 1.05E+00 | -                      |
| 3  | 58-苯并(a)蒽             | Benzo(a)anthracene                        | 56-55-3    | 1.52E+01 | -         | 1.52E+01 | 1.61E-03 | -         | 1.61E-03 | -                      |
| 4  | 61-苯并(k)荧蒽            | Benzo(k)fluoranthene                      | 207-08-9   | 1.52E+02 | -         | 1.52E+02 | 1.61E-02 | -         | 1.61E-02 | -                      |
| 5  | 62-屈                  | Chrysene                                  | 218-01-9   | 1.39E+03 | -         | 1.39E+03 | 1.61E-01 | -         | 1.61E-01 | -                      |
| 6  | 63-二苯并(a, h)<br>蒽     | Dibenzo(a, h)anthracene                   | 53-70-3    | 1.52E+00 | -         | 1.52E+00 | 1.61E-04 | -         | 1.61E-04 | -                      |
| 7  | 68-芘                  | Pyrene                                    | 129-00-0   | -        | 7.53E+03  | 7.53E+03 | -        | 7.90E-01  | 7.90E-01 | -                      |
| 8  | 66-茚并<br>(1,2,3-cd)芘  | Indeno(1,2,3-cd)pyrene                    | 193-39-5   | 1.52E+01 | -         | 1.52E+01 | 1.61E-03 | -         | 1.61E-03 | -                      |
| 9  | 65-芴                  | Fluorene                                  | 86-73-7    | -        | 1.00E+04  | 1.00E+04 | -        | 1.05E+00  | 1.05E+00 | -                      |
| 10 | 56-苊                  | Acenaphthene                              | 83-32-9    | -        | 1.51E+04  | 1.51E+04 | -        | 1.58E+00  | 1.58E+00 | -                      |
| 11 | 149-苊烯                | acenaphthylene                            | 208-96-8   | -        | 1.43E+04  | 1.43E+04 | -        | 1.58E+00  | 1.58E+00 | -                      |
| 12 | 503-锰<br>(Non-diet)   | Manganese                                 | 7439-96-5  | -        | 1.66E+04  | 1.66E+04 | -        | 3.69E+00  | 3.69E+00 | -                      |
| 13 | 423-总氟化物              | Fluoride                                  | 16984-48-8 | -        | 1.70E+04  | 1.70E+04 | -        | 1.05E+00  | 1.05E+00 | -                      |
| 14 | 120-邻苯二甲酸<br>苄丁酯      | Butyl benzyl phthalate, BBP               | 85-68-7    | 8.99E+02 | 5.58E+04  | 8.99E+02 | 8.48E-02 | 5.26E+00  | 8.48E-02 | -                      |
| 15 | 123-邻苯二甲酸二正辛酯         | Di-n-octyl phthalate,<br>DNOP             | 117-84-0   | -        | 2.79E+03  | 2.79E+03 | -        | 2.63E-01  | 2.63E-01 | -                      |
| 16 | 423-总氟化物              | Fluoride                                  | 16984-48-8 | -        | 1.70E+04  | 1.70E+04 | -        | 1.05E+00  | 1.05E+00 | -                      |
| 17 | 120-邻苯二甲酸<br>苄丁酯      | Butyl benzyl phthalate,<br>BBP            | 85-68-7    | 8.99E+02 | 5.58E+04  | 8.99E+02 | 8.48E-02 | 5.26E+00  | 8.48E-02 | -                      |
| 18 | 64-荧蒽                 | Fluoranthene                              | 206-44-0   | -        | 1.00E+04  | 1.00E+04 | -        | 1.05E+00  | 1.05E+00 | -                      |
| 19 | 129-苯并(g,h,i)<br>芘    | Benzo(g,h,i)perylene                      | 191-24-2   | -        | 7.14E+03  | 7.14E+03 | -        | 7.90E-01  | 7.90E-01 | -                      |
| 20 | 128-菲                 | phenanthrene                              | 85-01-8    | -        | 7.14E+03  | 7.14E+03 | -        | 7.90E-01  | 7.90E-01 | -                      |
| 21 | 57-蒽                  | Anthracene                                | 120-12-7   | -        | 7.53E+04  | 7.53E+04 | -        | 7.90E+00  | 7.90E+00 | -                      |

## 5、现场采样和实验室分析

## 5.1 现场布点及点位调整情况

本次按照 2022 年自行监测方案进行现场点位布设,土壤只设置表层土壤点位,地下水沿用原有监测井,点位未进行调整和偏移。

### 5.2 土壤钻孔和建井

### 5.2.1 土壤钻孔

本次 2023 年属于后续监测,只布设表层土壤点位,不布设深层土壤点位, 不涉及土壤钻孔。

### 5.2.2 地下水监测井建设

本次地下水利用 2022 年新建和厂区原有的地下水井,不再新建地下水监测井。

# 5.3 样品采集

# 5.3.1 土壤样品采集

土壤样品的采集按照《建设用地土壤污染风险管控和修复监测技术导则》 (HJ 25.2-2019)、《土壤环境监测技术规范》(HJ/T166-2004)、《地块土壤 和地下水中挥发性有机物采样技术导则》(HJ1019-2019)、《重点行业企业用 地调查样品采集保存和流转技术规定》和《工业企业场地环境调查评估与修复工 作指南(试行)》等相关要求执行。

表层土壤监测点位选在厂区绿化带土壤裸露区域采集一个土壤样品。采样的同时进行现场记录,详细记下样品名称、样品编号、气象条件、采样时间、采样位置、样品颜色气味等信息。本次于 2023 年 12 月 29 日共采集 6 个土壤表层样品。

#### (1) 挥发性有机物 (SVOCs) 样品取样

现场土壤样品采集时优先采集 VOCs 样品, 用聚四氟乙烯一次性注射器(注

射器手柄)采集土壤样品,针筒末端伸入 40 毫升聚四氟乙烯棕色玻璃瓶,将样品推入瓶中,采样过程将样品瓶略微倾斜,将土样直接推入样品瓶过程需防止保护剂溅出。VOCs 样品瓶采用 40ml 棕色吹扫玻璃瓶,现场共采集四瓶样品(其中两瓶加入 10 mL 甲醇固定剂,两瓶不加),每瓶采集样品量 5g,采样完成后用聚四氟乙烯密封垫瓶盖盖紧并将挥发性有机物样品瓶装入自封袋中密封并贴好标签。

土壤挥发性有机物样品采样照片见图 5.3-1。





图 5.3-1 土壤挥发性有机物样品采样照片

#### (2) 半挥发性有机物(SVOCs) 样品取样

在采集 SVOCs 样品时,通过不锈钢勺将土壤转移至 250mL 聚四氟乙烯螺旋盖棕色玻璃瓶中装满(消除样品顶空),采样时应尽量建设土壤样品在空气中的暴露时间。

土壤半挥发性有机物样品采样照片见图 5.3-2。





图 5.3-2 土壤半挥发性有机物样品采样照片

### (3) 重金属样品取样

在采集重金属样品时, 先用竹片将岩芯与金属钻孔器接触的部分土壤去除, 再用木勺将土壤样品转移至聚乙烯封口袋中。

土壤重金属样品采样照片见图 5.3-3。







图 5.3-3 土壤重金属样品采样照片

### (4) 土壤采样工作量统计

本次自行监测共采集 6 个土壤样品。土壤采样完成后样品采样位置照片见图 5.3-4。





图 5.3-4 土壤样品采集位置照片

## 5.3.2 地下水样品采集

#### (1) 采样前洗井

采样前需进行地下水监测井采样前洗井。采样前先采用贝勒管进行洗井,贝勒管取水位置为井管底部,控制贝勒管缓慢下降和上升,洗井体积为3倍滞水体积,直观判断达到水清砂净。洗井过程中,监测地下水的pH、电导率、浊度、水温等,至各项参数达到稳定时方可采样。

每次洗井结束后进行浊度、pH、温度、电导率、DO、OPR 的现场检查, 采样前洗井满足《重点行业企业用地调查样品采集保存和流转技术规定(试行)》 (环办土壤[2017]67 号)中的相关要求: pH 变化范围为±0.1、温度变化范围为 ±0.5℃、电导率变化范围为±3%、DO 变化范围为±10%、OPR 变化范围±10mV、 浊度<10NTU 时,其变化范围为±1NTU。

地下水洗井照片见图 5.3-5。





图 5.3-5 地下水洗井照片

#### (2) 地下水样品采集

本项目地下水样采集使用一次性贝勒管,采样保持一井一管,一井一根提水用的尼龙绳。避免交叉污染。采样时,先采集用于检测 VOCs 的水样,然后再采集用于检测其他水质指标的水样。对于未添加保护剂的样品瓶,采样前需用待采集水样润洗 2~3 次。按要求使用不同的容器装满水样不留气泡,加入固定剂,密封保存。地下水样品的保存参照《地下水环境监测技术规范》(HJ164-2020)

的要求进行,各指标分析方法有做要求的按照其分析方法要求进行。 2023年12月29日地下水采样照片见图5.3-6。共采集4个地下水样品。





图 5.3-6 地下水采样照片

## 5.4 样品保存与流转

## 5.4.1 样品保存

样品采集后,针对不同检测项目选择不同样品保存方式,土壤样品的保存主要按照《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)、《土壤环境监测技术规范》(HJ/T 166-2004)等相关规定进行,其中六价铬土壤样品保存按照《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法》(HJ1082-2019)要求进行。地下水挥发性有机物、半挥发性有机物、重金属等项目严格按照《地下水环境监测技术规范》(HJ 164-2020)执行。

#### (1) 现场暂存

现场暂存、采样现场配备样品保温箱,内置冰冻的蓝冰,样品采集后应立即 存放至保温箱内,保证样品在 4℃低温保存,采完样后当天及时送至分析实验室。

#### (2) 样品流转保存

由专人将样品从现场送往实验室,在送到实验室的流转过程中,样品须保存在存有冷冻蓝冰的保温箱内,4℃低温保存流转,且严防样品的损失、混淆和沾污,并在样品的有效保存时间内完成分析测试工作。

#### (3) 实验室保存

到达实验室后,送样者和接样者双方同时清点样品,即将样品逐件与样品登记表、样品标签和采样记录单进行核对,并在样品流转单上签字确认,样品交接

单由双方各存一份备查。核对无误后,将样品分类、整理和包装后放于冷藏柜中。

#### (4) 土壤样品的保存

土壤样品的保存按照主要《建设用地土壤污染状况调查技术导则》 (HJ25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)、《土壤环境监测技术规范》(HJ/T 166-2004)等相关规定进行。 土壤样品具体保存方式见表 5.4-1。

#### (5) 地下水样品保存

地下水样品的保存主要按照《地下水环境监测技术规范》(HJ164-2020)执行,地下水样品具体保存方式见表 5.4-2。各指标分析方法有做样品保存要求的按照分析方法保存期限要求执行。

| 检测项目       | 采样容器    | 保存温度  | 可保存时间   | 备注                 |
|------------|---------|-------|---------|--------------------|
| 巡侧坝日       | 不什合命    | 体行血及  | 可不行时间   | <b>一</b>           |
| рН         | G 或 P   | 低于 4℃ | /       | /                  |
| 重金属 (汞和六价铬 | G 或 P   | 低于 4℃ | 100 4   | /                  |
| 除外)        | G 以 P   |       | 180 d   |                    |
| 汞          | G       | 低于 4℃ | 28 d    | /                  |
| 六价铬        | G 或 P   | 低于 4℃ | 新鲜样品 1d | 新鲜样品 1d,制备好的试剂     |
| 八川堉        | G 以 P   |       |         | 30d                |
| 挥发性有机物     | 棕色 G    | 低于 4℃ | 7 d     | 带 PTFE 内衬 40mL 棕色顶 |
| 1年及11年初1初  | 你也G<br> |       | / u     | 空玻璃瓶, 10mL 甲醇液封    |
| 半挥发性有机物    | 棕色 G    | 低于 4℃ | 10 d    | 采样瓶装满装实并密封         |

表 5.4-1 土壤样品保存要求

| 表 5.4-2  | ᇸ    | 、水样. | 见的     | <b>但方</b> :        | 印法长  | / 再 |
|----------|------|------|--------|--------------------|------|-----|
| 77 J.4-2 | DH I | ヽハハギ | ויח חה | 1 <del>1</del> 1/1 | ᇄᅐᇺᄱ | ノンバ |

| 序号 | 检测项目   | 采样容器 | 保存剂及用量                                                        | 保存期 |
|----|--------|------|---------------------------------------------------------------|-----|
| 1  | pH 值*  | G, P | /                                                             | 12h |
| 2  | 色度*    | G, P | /                                                             | 12h |
| 3  | 嗅和味*   | G    | /                                                             | 6h  |
| 4  | 浑浊度*   | G, P | /                                                             | 12h |
| 5  | 肉眼可见物* | G    | /                                                             | 12h |
| 6  | 汞      | G, P | HCL,1%,如水样为中性,1L水样中加浓HCl2ml                                   | 14d |
| 7  | 六价铬    | G, P | NaOH, pH=8-9                                                  | 24h |
| 8  | 铅      | G, P | HNO3,1L 水样中加浓 HNO3 10ml®                                      | 14d |
| 9  | 镉      | G, P | HNO <sub>3</sub> ,1L 水样中加浓 HNO <sub>3</sub> 10ml <sup>®</sup> | 14d |
| 10 | 砷      | G, P | $H_2SO_4$ , $pH < 2$                                          | 14d |
| 11 | 铜      | P    | HNO <sub>3</sub> ,1L 水样中加浓 HNO <sub>3</sub> 10ml <sup>®</sup> | 14d |
| 12 | 镍      | G, P | HNO <sub>3</sub> ,1L 水样中加浓 HNO <sub>3</sub> 10ml              | 14d |
| 13 | 锌      | P    | HNO <sub>3</sub> ,1L 水样中加浓 HNO <sub>3</sub> 10ml <sup>®</sup> | 14d |
| 14 | 铁      | G, P | HNO3,1L 水样中加浓 HNO3 10ml                                       | 14d |

| 15 | 锰                     | G, P | HNO3,1L 水样中加浓 HNO3 10ml                                            | 14d |
|----|-----------------------|------|--------------------------------------------------------------------|-----|
| 16 | 总铬                    | P    | 1L 水样中加 10ml 浓 HNO3 酸化                                             | 14d |
| 17 | 硒                     | G, P | HCl,1L 水样中加浓 HCl 10ml                                              | 14d |
| 18 | 总硬度**                 | G, P | 加 HNO <sub>3</sub> ,pH<2                                           | 30d |
| 19 | 溶解性总固体**              | G, P | /                                                                  | 24h |
| 20 | 氨氮 (以 N<br>计)         | G, P | $H_2SO_4$ , $pH < 2$                                               | 24h |
| 21 | 硫化物                   | G, P | 1L水样加NaOH至pH=9,加入5%抗坏血酸5ml,<br>饱和EDTA3ml,滴加饱和Zn(Ac)₂至胶<br>体产生,常温避光 | 24h |
| 22 | 铝                     | P    | 1L 水样中加 10ml 浓 HNO3 酸化                                             | 14d |
| 23 | 硫酸盐**                 | G, P | /                                                                  | 30d |
| 24 | 氯化物**                 | G, P | /                                                                  | 30d |
| 25 | 挥发性酚类<br>(以苯酚计)<br>** | G    | 用H <sub>3</sub> PO <sub>4</sub> 调至pH=2,用0.01~0.02g抗坏血<br>酸除去余氯     | 24h |
| 26 | 阴离子表面活性剂**            | G, P | /                                                                  | 24h |
| 27 | 耗氧量                   | G    | 0-4℃避光保存                                                           | 2d  |
| 28 | 硝酸盐(以 N<br>计)**       | G, P | /                                                                  | 24h |
| 29 | 亚硝酸盐(以<br>N计)**       | G, P | /                                                                  | 24h |
| 30 | 氰化物                   | G, P | NaOH, pH>9                                                         | 12h |
| 31 | 氟化物**                 | P    | /                                                                  | 14h |

注: 1."\*"标识应尽量现场测定;

- 2.G 为硬质玻璃瓶; P 为聚乙烯瓶。
- 3.①为单项样品的最少采样量;
- ②如用溶出伏安法测定,可改用 1L 水样中加 19mL 浓 HClO4。
- 4.经 160℃干热灭菌 2h 的微生物采样容器,必须在两周内使用,否则应重新灭菌。经 121℃高压蒸气灭菌 15min 的采样容器,如不立即使用,应于 60℃将瓶内冷凝水烘干,两周内使用。

## 5.4.2 样品流转

装运前核对: 采样结束后现场逐项检查,如采样记录表、样品标签等,如有 缺项、漏项和错误处,应及时补齐和修正后方可装运。

样品运输:样品运输过程中严防损失、混淆或沾污,设置运输空白样,并在 样品低温(约4℃)暗处冷藏条件下尽快送至实验室分析测试。

<sup>&</sup>quot;\*\*"标识低温(0-4℃)避光保存。

样品交接:样品采集完后由专人将土壤样品送到实验室,送样者和接样者双方同时清点核实样品,并在样品交接单上签字确认,样品交接单由双方各存一份备查。核对无误后,将样品分类、整理和包装后于冷库中冷藏,待检。

土壤样品和地下水样品流转及分析时间表详见表 5.4-3 和表 5.4-4。

### 表 5.4-3 土壤样品流转及分析时间表

| 序号 | 样品<br>个数 | 检测项目                                                                                                                                                       | 容器                             | 保存条件                               | 样品允许<br>保留时间 | 采样时间       | 样品交接<br>时间 | 制样时间       | 前处理时<br>间  | 分析时间       |
|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|--------------|------------|------------|------------|------------|------------|
| 1  | 6        | 干物质(干)                                                                                                                                                     | PVC 土壤样品袋                      | 常温                                 | /            | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 | 2024.01.04 |
| 2  | 6        | 水分(湿)                                                                                                                                                      | 聚四氟乙烯硅胶<br>垫螺旋盖棕色玻<br>璃广口瓶     | 避光冷藏                               | /            | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 | 2023.12.30 |
| 3  | 6        | 砷、汞                                                                                                                                                        | 250mL 聚四氟乙烯-硅胶垫螺旋盖<br>棕色玻璃瓶    | 避光冷藏                               | 28d          | 2023.12.29 | 2023.12.29 | 2023.12.29 | 2023.12.29 | 2023.12.29 |
| 4  | 6        | 氟化物                                                                                                                                                        | PVC 土壤样品袋                      | <4℃,避光冷藏                           | /            | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 | 2024.01.04 |
| 5  | 6        | 铅、镉                                                                                                                                                        | PVC 土壤样品袋                      | 避光冷藏                               | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 6  | 6        | 铬、锌                                                                                                                                                        | PVC 土壤样品袋                      | 避光冷藏                               | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 7  | 6        | 铜                                                                                                                                                          | PVC 土壤样品袋                      | 避光冷藏                               | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 8  | 6        | 镍                                                                                                                                                          | PVC 土壤样品袋                      | 避光冷藏                               | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 9  | 6        | 锰                                                                                                                                                          | PVC 土壤样品袋                      | 避光冷藏                               | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.12 | 2024.01.12 | 2024.01.12 |
| 10 | 6        | 锑                                                                                                                                                          | PVC 土壤样品袋                      | 避光冷藏                               | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.12 | 2024.01.12 | 2024.01.12 |
| 11 | 6        | 苯、乙苯、甲苯、间二甲<br>苯+对二甲苯、邻-二甲苯、<br>苯乙烯                                                                                                                        | 40mL 聚四氟乙<br>烯-硅胶垫螺旋盖<br>棕色玻璃瓶 | 冷藏 0~4℃避光保存、加有 10mL 甲醇(色谱级或农残级)保护剂 | 7d           | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 12 | 6        |                                                                                                                                                            |                                | 避光冷藏                               | 7d           | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 13 | 6        | 萘、苊烯、苊、芴、菲、<br>蒽、邻苯二甲酸(2-二乙基<br>己基)酯、荧蒽、芘、邻<br>苯二甲酸丁基苄基酯、甲<br>并[a]蒽、崫、邻苯二甲酸<br>二正辛酯、苯并[b]荧蒽、<br>苯并[k]荧蒽、苯并[a]芘、<br>茚并[1,2,3-cd]芘、二苯并<br>[a,h]蒽、苯并(g,h,i) 菲 | 250mL 聚四氟乙烯-硅胶垫螺旋盖棕色玻璃瓶        | 冷藏 0~4℃避光保<br>存(填满密封)              | 10d          | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 | 2023.12.31 |
| 14 | 6        | 石油烃(C <sub>10</sub> -C <sub>40</sub> )                                                                                                                     | PVC 土壤样品袋                      | 避光冷藏                               | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |

# 表 5.3-4 地下水样品流转及分析时间表

| 序号 | 样品<br>个数 | 检测项目                                                                                                          | 容器            | 保存剂及用量                | 保存条件            | 样品允许保留<br>时间                 | 采样时间       | 样品交接<br>时间 | 前处理时间      | 分析时间       |
|----|----------|---------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-----------------|------------------------------|------------|------------|------------|------------|
| 1  | 4        | 邻苯二甲酸二辛酯                                                                                                      | 玻璃瓶           | 用盐酸和氢氧化钠调节 pH 为7 左右   | 冷藏 0~4℃避<br>光保存 | 7d 内完成萃<br>取,30d 内完成<br>分析   | 2023.12.29 | 2023.12.29 | 2024.01.01 | 2024.01.01 |
| 2  | 4        | 石油烃(C <sub>10</sub> -C <sub>40</sub> )                                                                        | 玻璃瓶           | 加盐酸酸化至 pH≤2           | 冷藏 0~4℃避<br>光保存 | 14d 内完成萃<br>取,提取液 40d<br>内分析 | 2023.12.29 | 2023.12.29 | 2024.01.07 | 2024.01.07 |
| 3  | 4        | 氟化物                                                                                                           | 聚乙<br>烯瓶      | /                     | 冷藏 0~4℃避<br>光保存 | 7d                           | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 |
| 4  | 4        | 铜、镍、铅、镉、铬、<br>锡、锑、锰、锌                                                                                         | 聚乙 烯瓶         | 加硝酸,pH≤2              | 冷藏 0~4℃避<br>光保存 | 14d                          | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 |
| 5  | 4        | 苯、甲苯、乙苯、二<br>甲苯、苯乙烯                                                                                           | 玻璃<br>瓶       | /                     | 冷藏 0~4℃避<br>光保存 | 14d                          | 2023.12.29 | 2023.12.29 | 2024.01.09 | 2024.01.09 |
| 6  | 4        | 多环芳烃 (萘、苊、 芴、苊烯、菲、蒽、 荧蒽、芘、苯并 (a) 蒽、䓛、苯并 (b) 荧 蒽、苯并 (k) 荧蒽、 苯并 (a) 芘、二苯并 (a,h) 蒽、苯并(g,h,i) 花、茚并 (1,2,3-c,d) 芘) | 棕色<br>玻璃<br>瓶 | 每升水中加入 80mg 硫<br>代硫酸钠 | 冷藏 0~4℃避<br>光保存 | 7d 内萃取,40d<br>内分析            | 2023.12.29 | 2023.12.29 | 2023.12.31 | 2023.12.31 |
| 7  | 4        | 耗氧量                                                                                                           | 玻璃瓶           | 加硫酸处理                 | 冷藏 0~4℃避<br>光保存 | 2d                           | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 |
| 8  | 4        | 氨氮                                                                                                            | 聚乙 烯瓶         | 加硫酸,pH≤2              | 冷藏 0~4℃避<br>光保存 | 7d                           | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 |
| 9  | 4        | 砷、汞                                                                                                           | 聚乙<br>烯瓶      | 1L 水中加浓 HCl10mL       | 冷藏 0~4℃避<br>光保存 | 14d                          | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 |

# 5.5 样品分析测试

土壤样品的分析测试应参照 GB36600 中的指定方法,地下水样品的分析测试应参照 GB/T14848 中的指定方法。检测实验室确保目标污染物的方法检出限满足筛选值的要求。土壤和地下水样品的检测报告加盖 CMA 标识。本次监测土壤污染物分析方法详见表 5.5-1。

表 5.5-1 土壤污染物分析方法一览表

| 序号 | 检测项目           | 检测方法                                                                    | 检出限   | 单位    |
|----|----------------|-------------------------------------------------------------------------|-------|-------|
| 1  | 砷              | НЈ 680-2013                                                             | 0.01  | mg/kg |
| 2  | 汞              | 《土壤和沉积物汞、砷、硒、铋、锑的测定 微波消解/原子荧光法》                                         | 0.002 | mg/kg |
| 3  | 铅              | GB/T 17141-1997                                                         | 0.1   | mg/kg |
| 4  | 镉              | 《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》                                              | 0.01  | mg/kg |
| 5  | 镍              | НЈ 491-2019                                                             | 3     | mg/kg |
| 6  | 铜              |                                                                         | 1     | mg/kg |
| 7  | 锌              | 火焰原子吸收分光光度法》                                                            | 1     | mg/kg |
| 8  | 铬              | 人相深了"灰牧刀儿儿友仏"<br>                                                       | 4     | mg/kg |
| 9  | 锰              | HJ 803-2016《土壤和沉积物 12 种金属元素                                             | 0.7   | mg/kg |
| 10 | 锑              | 的测定 王水提取-电感耦合等离子体质谱<br>法》                                               | 0.3   | mg/kg |
| 11 | 锡α             | JY/T 0567-2020《电感耦合等离子体发射光谱分析方法通则》                                      | 4     | mg/kg |
| 12 | 石油烃(C10-C40)   | HJ 1021-2019《土壤和沉积物 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> )的测定气相色谱法》 | 6     | mg/kg |
| 13 | 苯并[a]蒽         |                                                                         | 0.1   | mg/kg |
| 14 | 苯并[a]芘         |                                                                         | 0.1   | mg/kg |
| 15 | 苯并[b]荧蒽        |                                                                         | 0.2   | mg/kg |
| 16 | 苯并[k]荧蒽        |                                                                         | 0.1   | mg/kg |
| 17 | 崫              |                                                                         | 0.1   | mg/kg |
| 18 | 二苯并[a,h]蒽      |                                                                         | 0.1   | mg/kg |
| 19 | 茚并[1,2,3-c,d]芘 | НЈ 834-2017                                                             | 0.1   | mg/kg |
| 20 | 萘              | 《土壤和沉积物 半挥发性有机物的测定 气                                                    | 0.09  | mg/kg |
| 21 | 苊烯             | 相色谱-质谱法》                                                                | 0.09  | mg/kg |
| 22 | 苊              |                                                                         | 0.1   | mg/kg |
| 23 | 芴              |                                                                         | 0.08  | mg/kg |
| 24 | 菲              |                                                                         | 0.1   | mg/kg |
| 25 | 芘              |                                                                         | 0.1   | mg/kg |
| 26 | 蒽              |                                                                         | 0.1   | mg/kg |
| 27 | 苯并(g,h,i)菲     |                                                                         | 0.1   | mg/kg |

| 28    | 荧蒽                  |                                                    | 0.2      | mg/kg   |
|-------|---------------------|----------------------------------------------------|----------|---------|
| 29    | 邻苯二甲酸二正<br>辛酯       |                                                    | 0.2      | mg/kg   |
| 30    | 邻苯二甲酸二(2-<br>乙基己基)酯 |                                                    | 0.1      | mg/kg   |
| 31    | 邻苯二甲酸丁基<br>苄酯       |                                                    | 0.2      | mg/kg   |
| 32    | 氟化物                 | GB/T 22104-2008 《土壤质量 氟化物的测定<br>离子选择电极法》           | 2.5      | μg      |
| 33    | 苯                   |                                                    | 0.0019   | mg/kg   |
| 34    | 甲苯                  | JH 605 2011                                        | 0.0013   | mg/kg   |
| 35    | 间,对-二甲苯             | HJ 605-2011<br>《土壤和沉积物 挥发性有机物的测定 吹扫                | 0.0012   | mg/kg   |
| 36    | 邻二甲苯                | 《工壤和机然初 挥及性有机物的侧足 吸扫                               | 0.0012   | mg/kg   |
| 37    | 乙苯                  | 加朱/ 7/1110月-/火月74//                                | 0.0012   | mg/kg   |
| 38    | 苯乙烯                 |                                                    | 0.0011   | mg/kg   |
| A 12. | ·····               | 与石口 八石石 (物区位口 ************************************ | V= 101-1 | 11-7713 |

备注:"""表示该项目为分包项目,分包至(资质编号:202319122787)深圳市惠利权环境检测有限公司。

表 5.5-2 地下水污染物分析方法

| 序号 | 检测项目                                    | 检测方法                                                                         | 检出限     | 单位   |
|----|-----------------------------------------|------------------------------------------------------------------------------|---------|------|
| 1  | 氟化物                                     | GB/T 7484-1987<br>《水质 氟化物的测定 离子选择电极法》                                        | 0.05    | mg/L |
| 2  | 耗氧量                                     | GB/T 5750.7-2023(4.1)《生活饮用水标准<br>检验方法 有机物综合指标 》                              | 0.05    | mg/L |
| 3  | 氨氮                                      | HJ 535-2009<br>《水质 氨氮的测定纳氏试剂分光光度法》                                           | 0.025   | mg/L |
| 4  | 砷                                       | HJ 694-2014《水质 汞、砷、硒、铋和锑的                                                    | 0.0003  | mg/L |
| 5  | 汞                                       | 测定 原子荧光法》                                                                    | 0.00004 | mg/L |
| 6  | 铅                                       |                                                                              | 0.00009 | mg/L |
| 7  | 镉                                       |                                                                              | 0.00005 | mg/L |
| 8  | 铬                                       |                                                                              | 0.00011 | mg/L |
| 9  | 铜                                       | НЈ 700-2014                                                                  | 0.00008 | mg/L |
| 10 | 锌                                       | 《水质 65 种元素的测定 电感耦合等离子                                                        | 0.00067 | mg/L |
| 11 | 锰                                       | 体质谱法》                                                                        | 0.00012 | mg/L |
| 12 | 锡                                       |                                                                              | 0.00008 | mg/L |
| 13 | 镍                                       |                                                                              | 0.00006 | mg/L |
| 14 | 锑                                       |                                                                              | 0.00015 | mg/L |
| 15 | 石油烃 (C <sub>10</sub> -C <sub>40</sub> ) | HJ 894-2017<br>《水质 可萃取性石油烃(C <sub>10</sub> -C <sub>40</sub> ))的测<br>定 气相色谱法》 | 0.01    | mg/L |
| 16 | 萘                                       | НЈ 478-2009                                                                  | 0.012   | μg/L |
| 17 | 苊                                       | HJ 478-2009<br>  《水质 多环芳烃的测定 液液萃取和固相                                         | 0.005   | μg/L |
| 18 | 芴                                       | 萃取高效液相色谱法》                                                                   | 0.013   | μg/L |
| 19 | 苊烯                                      | 一个人的人们从11人们口的14人//                                                           | 0.008   | μg/L |

| 20 | 菲                            |                                                         | 0.012                | μg/L      |
|----|------------------------------|---------------------------------------------------------|----------------------|-----------|
| 21 | 蒽                            |                                                         | 0.004                | $\mu g/L$ |
| 22 | 荧蒽                           |                                                         | 0.005                | $\mu g/L$ |
| 23 | 芘                            |                                                         | 0.016                | μg/L      |
| 24 | 苯并(a)蒽                       |                                                         | 0.012                | μg/L      |
| 25 | 崫                            |                                                         | 0.005                | μg/L      |
| 26 | 苯并(b) 荧蒽                     |                                                         | 0.004                | $\mu g/L$ |
| 27 | 苯并(k) 荧蒽                     |                                                         | 0.004                | μg/L      |
| 28 | 苯并(a)芘                       |                                                         | 0.004                | μg/L      |
| 29 | 二苯并(a,h)蒽                    |                                                         | 0.003                | μg/L      |
| 30 | 苯并(g,h,i)菲                   |                                                         | 0.005                | μg/L      |
| 31 | 茚并(1,2,3-c,d)<br>芘           |                                                         | 0.005                | μg/L      |
| 32 | 邻苯二甲酸丁基<br>苄基酯 <sup>α</sup>  | GB/T 5750.8-2023<br>《生活饮用水标准检验方法 第 8 部分:有<br>机物指标》附录 B  | 2.5×10 <sup>-4</sup> | mg/L      |
| 33 | 邻苯二甲酸二(2-乙基己基)酯 <sup>α</sup> | GB/T 5750.8-2023 (15.1)<br>《生活饮用水标准检验方法 第8部分:有<br>机物指标》 | 0.41                 | μg/L      |
| 34 | 邻苯二甲酸二辛<br>酯                 | HJ/T 72-2001 《水质邻苯二甲酸二甲(二丁、二辛) 酯的测定液相色谱法》               | 0.2                  | μg/L      |
| 35 | 苯                            |                                                         | 1.4                  | μg/L      |
| 36 | 甲苯                           | НЈ 639-2012                                             | 1.4                  | μg/L      |
| 37 | 间,对-二甲苯                      | 《水质 挥发性有机物的测定 吹扫捕集/气                                    | 2.2                  | μg/L      |
| 38 | 邻二甲苯                         | 相色谱-质谱法》                                                | 1.4                  | μg/L      |
| 39 | 乙苯                           |                                                         | 0.8                  | μg/L      |
| 40 | 苯乙烯                          |                                                         | 0.6                  | μg/L      |

备注:"""表示该项目为分包项目,分包至(资质编号:202319122787)深圳市惠利权环境检测有限公司。

## 5.6 质量保证与质量控制

## 5.6.1 质量控制机制与流程

为保证整个调查采样与实验室检测采样全过程的质量,本公司建立了全过程的质量保证与质量控制体系,具体见下图。

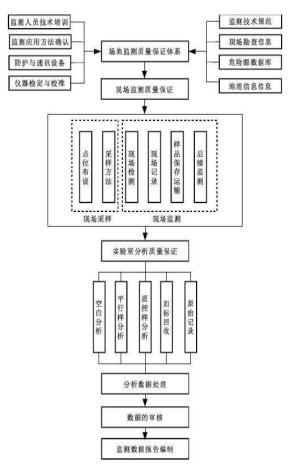



图 5.6-1 土壤自行监测采样与实验室检测分析质量保证体系框架图

## 5.6.2 现场采样过程中质量控制

本次自行监测土壤采样严格按《土壤环境监测技术规范》(HJ/T166-2004),《地块土壤和地下水中挥发性有机物采样技术导则》和《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)中质量控制要求进行;地下水采样严格按《地下水环境监测技术规范》(HJ164-2020),《地块土壤和地下水中挥发性有机物采样技术导则》和《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)中质量控制要求进行。

- (1)本次自行监测采样前根据收集资料制定详细的采样计划(采样方案), 采样过程中认真按采样计划进行操作。
- (2)本次自行监测设置采样组长 1 人,富有经验的采样员 2-3 人,负责当 天批次的采样任务,采样任务下达以后采样组长对采样人员进行任务宣讲以及相 关采样标准和注意事项进项培训。设备管理员对采样设备进行清点,检查采样设 备的完好性和可靠性,包括设备检定校准情况,电量情况,冷藏效果(≤4℃), 精度要求等,确保项目的正确进行。
- (3) 采样时,应由 2 人以上在场进行操作,采样过程中采样员佩戴一次性 PE 手套,每次取样后进行更换。采样工具、设备保持干燥、清洁,不得使待采 样品受到污染和损失。
- (4) 采样过程中要防止待采样品受到污染和发生变质,样品盛入容器后, 在容器壁上应随即贴上标签。
- (5) 地下水采样时,在洗井完成后水位稳定再用贝勒管取样,每个水井使用一根贝勒管,避免交叉污染,装瓶时先用所取水样润洗。
- (6)样品运输过程中,应防止样品间的交叉污染,盛样容器不可倒置、倒放,应防止破损、浸湿和污染。
  - (7) 填写好、保存好采集记录、流转单等文件,避免样品混淆。
- (8) 采样结束后现场逐项检查,如采样记录表、样品标签等,如有缺项、漏项和错误处,应及时补齐和修正后方可装运。
- (9)样品运输过程中严防损失、混淆或沾污,并在样品低温(4°C)暗处冷藏条件下尽快送至实验室分析测试。
- (10)样品送到实验室后,采样人员和实验室样品管理员双方同时清点核实样品,并在样品流转单上签字确认。
- (11)样品管理员接样后及时与分析人员进行交接,双方核实清点样品,核对无误后分析人员在样品流转单上签字,然后进行样品制。;
  - (12) 采样全过程由采样组长负责。

#### 5.6.2.1 土壤现场质控样设置

本次自行监测现场采样控制样包括现场平行样、运输空白样和全程序空白样, 需符合《重点行业企业用地调查样品采集保存和流转技术规定(试行)》(环办 土壤[2017]67号)中"土壤现场平行样不少于地块总样品数的10%"的要求。

按照要求,每批次土壤共设置1个全程序空白,1个运输空白;用于挥发性有机物项目和半挥发性有机物,重金属和其它理化指标的现场质量控制,目的是检查样品在现场,运输过程和从采样到分析全过程中是否受到污染,使用检出限作为控制要求。土壤样品质控措施数量及占比统计见表 5.6-1。

#### 5.6.2.2 地下水质控样设置

本次自行监测现场采样控制样包括现场平行样、现场空白样。本次地下水现场平行样比例需符合《重点行业企业用地调查样品采集保存和流转技术规定(试行)》(环办土壤[2017]67号)中"地下水现场平行样不少于地块总样品数的10%"的要求。

按照要求,本项目地下水共设置1个现场空白、1个运输空白,1个全程序空白,1个设备空白;用于挥发性有机物项目和半挥发性有机物,重金属和其它理化指标的现场质量控制,目的是检查样品在现场,运输过程和从采样到分析全过程中是否受到污染,使用检出限作为控制要求。地下水样品质控措施数量及占比统计见表 5.6-3。

## 5.6.3 实验室质量保证和质量控制

#### 5.6.3.1 空白试验

本次自行监测每批次样品分析时均进行空白试验。检测方法有规定频次的,按检测方法的规定进行;检测方法无规定时,每批样品或每 20 个样品至少做 1 次空白试验。

#### 5.6.3.2 精密度控制

#### (1) 测定率

现场采样每个检测项目每批次按 10%的比例采集现场平行样开展分析,每 批次样品分析时,每个检测项目均须做实验室平行样分析。在每批次分析样品中, 应随机抽取 5%的样品进行实验室平行样分析。当样品少于 10 个时,平行样不少 于 1 个。

#### (2) 测定方式

实验室平行,由分析者自行编入的明码平行样,或由质控员在采样现场或实验室编入的密码平行样。

#### (3) 合格要求

平行双样测定结果的相对偏差在允许误差控制范围之内者为合格。当平行双样测定合格率低于 95%时,除对当批样品重新测定外再增加样品数 10%~20%的平行样,直至平行双样测定合格率大于 95%。

### (4) 相对偏差(RD)的计算:

$$RD (\%) = (A-B) / (A+B) *100\%$$

若平行双样测定值(A,B)的相对偏差(RD)在允许控制的范围内,则该平行双样的精密度控制为合格,否则为不合格。

#### 5.6.3.3 准确度控制

#### (1) 使用标准物质或质控样品

每批次至少测试一个与待测样品浓度相近的有证标准样品。有证标准样品的测定浓度应落在保证值(在 95%的置信水平)范围之内,否则本批结果无效,需重新分析测定。

#### (2) 样品加标回收率

依据技术规定,当没有合适的土壤或地下水基体有证标准物质时,对可以进 行加标试验的指标采用样品加标回收率试验对准确度进行控制。

回收率(R)计算公式为:

R(%)=(加标后总量 - 加标前测量值)/加标量×100%

若样品加标回收率在规定的允许范围内,则该加标回收率试验样品的准确 度控制为合格,否则为不合格。

#### (3) 替代物加标回收率

土壤替代物加标回收率质控结果见表 5.6-5。

#### 5.6.3.4 校准曲线检查

为确保校准曲线的准确性,挥发性有机物、半挥发性有机物每 24h 分析一次 校准曲线中间点浓度,无机重金属项目每测定 20 个样品校准一次曲线中间点浓度,其测定值与加入浓度值的比值的相对误差或相对偏差在标准要求范围内,若 校准不符合方法要求,则应重新绘制校准曲线。

#### 5.6.3.5 准确性控制总结

土壤和地下水进行准确度试验,准确度依据 HJ/T 166-2004 《土壤环境监测技术规范》、HJ 164-2020 《地下水环境监测技术规范》进行判定,满足技术规定中样品分析测试准确度要求达到 100%的要求,准确度符合要求。

土壤样品质控结果统计见表 5.6-2, 地下水样品质控结果统计见表 5.6-4。

### 5.6.4 监测过程中受到干扰时的处理

检测过程中受到干扰时,按有关处理制度执行。一般要求如下:停水、停电、停气等,凡影响到检测质量时,全部样品重新测定。仪器发生故障时,可用相同等级并能满足检测要求的备用仪器重新测定。无备用仪器时,将仪器修复,重新检定合格后重测。

### 5.6.5 报告及原始记录的质量控制

分析检测结束后,按照质量保证要求,对实验室数据及原始记录进行校对和 初审,保证实验数据的准确无误。实验数据审核执行三级审核制,第一级为采样 或分析人员之间的相互校对,第二级为科室(或组)负责人的校核,第三级为授 权签字人的审核签发。

- (1) 实验室分析原始记录包括分析试剂配制记录、标准溶液配制及标定记录、校准曲线记录、各监测项目分析测试原始记录、内部质量控制记录等。
- (2)分析原始记录包含足够的信息,以便在可能情况下找出影响不确定度的因素,并使实验室分析工作在最接近原来条件下能够复现。记录信息包括样品名称,样品编号,样品性状,采样时间和地点,分析方法依据,使用仪器名称和型号、编号,测定项目,分析时间,环境条件,标准溶液名称、浓度、配制日期,校准曲线,取样体积,计量单位,仪器信号值,计算公式,测定结果,质控数据,测试分析人员、校对人员签名等。
- (3) 在测试分析过程中及时、真实填写原始记录,不得凭追忆事后补填或 抄填。记录应使用墨水笔或签字笔填写,要求字迹端正、清晰。原始记录不得涂 改。当记录中出现错误时,应在错误的数据上划一横线(不得覆盖原有记录的可

见程度),如需改正的记录内容较多,可用框线画出,在框边处添写"作废"两字,并将正确值填写在其上方。所有的改动处应有更改人签名或盖章。对于测试分析过程中的特殊情况和有必要说明的问题,应记录在备注栏内或记录表边旁。

表 5.6-1 土壤样品质控措施数量及占比统计表

|              |          |             | 现场质         | 控         |     |     |     |    |          |     |      | 实验 | 室质控       |    |            |        |    |    |              |
|--------------|----------|-------------|-------------|-----------|-----|-----|-----|----|----------|-----|------|----|-----------|----|------------|--------|----|----|--------------|
| 土壤检测项目       | 土壤样品(件)  | 运输空白        | 全程序空<br>白   | 现场        | 平行  | 实验的 | 室空白 |    | 室平行<br>样 | 有证材 | 示准物质 |    | 收-样品<br>标 |    | 回收-空<br>加标 | 替代物地   |    |    | 线浓度中<br>  旬值 |
|              | IND CITY | 数量 (批<br>次) | 数量 (批<br>次) | 数量<br>(个) | 占比  | 数量  | 占比  | 数量 | 占比       | 数量  | 占比   | 数量 | 占比        | 数量 | 占比         | 数量     | 占比 | 数量 | 占比           |
| 砷            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 汞            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 铅            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 镉            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 铜            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 镍            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 铬            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 锰            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 锌            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 锑            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 2  | 33%          |
| 锡            | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | /   | /    | /  | /         | /  | /          | /      | /  | /  | /            |
| 氟化物          | 6        | /           | /           | 1         | 17% | 2   | 33% | 1  | 17%      | 1   | 17%  | /  | /         | /  | /          | /      | /  | 1  | 17%          |
| 石油烃(C10-C40) | 6        | /           | /           | 1         | 17% | 1   | 17% | 1  | 17%      | /   | /    | 1  | 17%       | 1  | 17%        | /      | /  | 1  | 17%          |
| 挥发性有机物       | 6        | 1           | 1           | 1         | 17% | 1   | 17% | 1  | 17%      | /   | /    | 1  | 17%       | 1  | 17%        | 3 个*14 | /  | 1  | 17%          |
| 半挥发性有机物      | 6        | /           | /           | 1         | 17% | 1   | 17% | 1  | 17%      | /   | /    | 1  | 17%       | 1  | 17%        | /      | /  | 1  | 17%          |

### 表 5.6-2 土壤样品质控结果统计表

|    |      |       |           | 空白测        | 定值         |        | 珂                              | 见场平行                  | 实                              | 验室平行样                      |      | 加标                 | 回收 |                    | 半挥发性<br>目标物加 |                    | 校准曲线中                        | 间浓度点                  |    |
|----|------|-------|-----------|------------|------------|--------|--------------------------------|-----------------------|--------------------------------|----------------------------|------|--------------------|----|--------------------|--------------|--------------------|------------------------------|-----------------------|----|
|    |      |       |           |            |            |        |                                |                       |                                |                            | 空白   | 加标                 | 样品 | 加标                 |              |                    | 相对误差/                        | 允许相对<br>误差/偏          |    |
| 序号 | 检测项目 | 空白 值单 | 运输空<br>白值 | 全程序<br>空白值 | 实验室空白<br>值 | 空白要求   | 绝对偏<br>差/相对<br>偏差<br>(%)范<br>围 | 允许相对偏差                | 绝对偏<br>差/相对<br>偏差<br>(%)范<br>围 | 允许绝对偏差/<br>允许相对偏差范<br>围(%) | (%)范 | 回收率<br>参考范<br>围(%) |    | 回收率<br>参考范<br>围(%) | 围            | 回收率<br>控制范<br>围(%) | 偏差; 与相对偏差; 的相对偏差; 的相定值生比值比值。 | 差; 允偏许差; 对值许测定值的 位(%) |    |
|    |      |       |           |            |            |        | 0.88                           | <10mg/kg:<br>≤±20     | 0.00                           | <10mg/kg:<br>≤±20          |      |                    |    |                    |              |                    |                              |                       |    |
| 1  | 砷    | mg/kg | /         | /          | 均为 0.01L   | 0.01L  | ,                              | 10-20mg/kg:<br>≤±15   | ,                              | 10-20mg/kg:<br>≤±15        | /    | /                  | /  | /                  | /            | /                  | -4.29~1.56                   | ≤±10                  | 合格 |
|    |      |       |           |            |            |        | /                              | >20mg/kg:<br>≤±15     | >20mg/kg:<br>≤±15              |                            |      |                    |    |                    |              |                    |                              |                       |    |
|    |      |       |           |            |            |        | 3.23                           | <0.1mg/kg:<br>≤±35    | 1.59                           | <0.1mg/kg:<br>≤±35         |      |                    |    |                    |              |                    |                              |                       |    |
| 2  | 汞    | mg/kg | /         | /          | 均为 0.002L  | 0.002L | /                              | 0.1-0.4mg/kg:<br>≤±30 | /                              | 0.1-0.4mg/kg:<br>≤±30      | /    | /                  | /  | /                  | /            | /                  | -5.22~4.40                   | ≤±10                  | 合格 |
|    |      |       |           |            |            |        | /                              | >0.4mg/kg:<br>≤±25    | /                              | >0.4mg/kg:<br>≤±25         |      |                    |    |                    |              |                    |                              |                       |    |
|    |      |       |           |            |            |        | /                              | <20mg/kg:<br>≤±30     | /                              | <20mg/kg:<br>≤±30          |      |                    |    |                    |              |                    |                              |                       |    |
| 3  | 铅    | mg/kg | /         | /          | 均为 0.1L    | 0.1L   | /                              | 20-40mg/kg:<br>≤±25   | /                              | 20-40mg/kg:<br>≤±25        | /    | /                  | /  | /                  | /            | /                  | -1.12~4.84                   | ≤±10                  | 合格 |
|    |      |       |           |            |            |        | 0.27                           | >40mg/kg:<br>≤±20     | 0.36                           | >40mg/kg:<br>≤±20          |      |                    |    |                    |              |                    |                              |                       |    |
|    |      |       |           |            |            |        | /                              | <0.1mg/kg:<br>≤±35    | /                              | <0.1mg/kg:<br>≤±35         |      |                    |    |                    |              |                    |                              |                       |    |
| 4  | 镉    | mg/kg | /         | /          | 均为 0.01L   | 0.01L  | 2.88                           | 0.1-0.4mg/kg:<br>≤±30 | 5.88                           | 0.1-0.4mg/kg:<br>≤±30      | /    | /                  | /  | /                  | /            | /                  | -4.80~8.00                   | ≤±10                  | 合格 |
|    |      |       |           |            |            |        | /                              | >0.4mg/kg:<br>≤±25    | /                              | >0.4mg/kg:<br>≤±25         |      |                    |    |                    |              |                    |                              |                       |    |

|    |                  |       |           | 空白测    | 定值            |      | 亊                              | 见场平行                       | 实                              | 验室平行样                      |       | 加标                 | 回收   |                    | 半挥发性<br>目标物加 |                    | 校准曲线中        | 间浓度点                                               |    |
|----|------------------|-------|-----------|--------|---------------|------|--------------------------------|----------------------------|--------------------------------|----------------------------|-------|--------------------|------|--------------------|--------------|--------------------|--------------|----------------------------------------------------|----|
|    |                  |       |           |        |               |      |                                |                            |                                |                            | 空白    | 加标                 | 样品   | 加标                 |              |                    | 相对误差/        | 允许相对<br>误差/偏                                       |    |
| 序号 | 检测项目             | 空白 值单 | 运输空<br>白值 | 全程序空白值 | 实验室空白<br>值    | 空白要求 | 绝对偏<br>差/相对<br>偏差<br>(%)范<br>围 | 允许绝对偏差/<br>允许相对偏差<br>范围(%) | 绝对偏<br>差/相对<br>偏差<br>(%)范<br>围 | 允许绝对偏差/<br>允许相对偏差范<br>围(%) | (%)范  | 回收率<br>参考范<br>围(%) | (%)  | 回收率<br>参考范<br>围(%) |              | 回收率<br>控制范<br>围(%) | 对偏差; 测       | 差;允偏许 起;允值许 一个 一个 一个 一个 一个 一个 一个 一个 一个 一个 一个 一个 一个 |    |
| 5  |                  | mg/kg |           | /      | 均为 1L         | 1L   | 0.00                           | ≤±20                       | 0.00                           | ≤±20                       | /     | /                  | /    | /                  | /            | /                  | -5.25~ -0.62 |                                                    | 合格 |
| 6  | 镍                | mg/kg |           | /      | 均为 3L         | 3L   | 9.68                           | ≤±20                       | 0.00                           | ≤±20                       | /     | /                  | /    | /                  | /            | /                  | -1.70~ -1.05 | ≤±10                                               | 合格 |
| 7  | 铬                | mg/kg |           | /      | 均为 4 <u>L</u> | 4L   | 5.00                           | ≤±20                       | 0.00                           | ≤±20                       | /     | /                  | /    | /                  | /            | /                  | -2.12~ -0.35 | ≤±10                                               | 合格 |
| 8  | 锰                | mg/kg |           | /      | 均为 0.7L       | 0.7L | 1.23                           | ≤±30                       | 1.80                           | ≤±30                       | /     | /                  | /    | /                  | /            | /                  | -1.41~3.49   | ≤±10                                               | 合格 |
| 9  | 锌                | mg/kg | /         | /      | 均为 1L         | 1L   | 0.00                           | ≤±20                       | 0.00                           | ≤±20                       | /     | /                  | /    | /                  | /            | /                  | 4.38~7.35    | ≤±10                                               | 合格 |
|    |                  |       |           |        |               |      | 0.00                           | <0.1mg/kg:<br>≤±30         | 0.00                           | <0.1mg/kg:<br><±30         |       |                    |      |                    |              |                    |              |                                                    |    |
| 10 | 锑                | mg/kg | /         | /      | 均为 0.3L       | 0.3L | /                              | 0.1-1.0mg/kg:<br>≤±25      | /                              | 0.1-1.0mg/kg:<br>≤±25      | /     | /                  | /    | /                  | /            | /                  | -8.66~ -0.89 | ≤±10                                               | 合格 |
|    |                  |       |           |        |               |      | /                              | >1.0mg/kg:<br>≤±20         | /                              | >1.0mg/kg:<br>≤±20         |       |                    |      |                    |              |                    |              |                                                    |    |
| 11 | 锡                | mg/kg | /         | /      | 均为 2L         | 2L   | 17.5                           | ≤±20                       | 0.13                           | ≤±20                       | /     | /                  | /    | /                  | /            | /                  | /            | /                                                  | 合格 |
| 12 | 氟化物              | μg    | /         | /      | 2.5L          | 2.5L | 2.18                           | ≤±10                       | 2.28                           | ≤±10                       | /     | /                  | /    | /                  | /            | /                  | -1.75        | ≤±10                                               | 合格 |
| 13 | 石油烃<br>(C10-C40) | mg/kg | /         | /      | 6L            | 6L   | 3.35                           | ≤±25                       | 0.00                           | ≤±25                       | 110.0 | 70-120             | 86.4 | 50-140             | /            | /                  | 6.24         | ≤±10                                               | 合格 |
| 14 | 苯并 (a) 蒽         | mg/kg | /         | /      | 0.1L          | 0.1L | 0.00                           | ≤±40                       | 0.00                           | ≤±40                       | /     | /                  | /    | /                  | 95.9~96.4    | 73~121             | 0.44         | ≤±30                                               | 合格 |
| 15 | 苯并(a) 芘          | mg/kg | /         | /      | 0.1L          | 0.1L | 0.00                           | ≤±40                       | 0.00                           | ≤±40                       | /     | /                  | /    | /                  | 79.8~80.0    | 45~105             | -2.25        | ≤±30                                               | 合格 |
| 16 | 苯并(b) 荧<br>蒽     | mg/kg | /         | /      | 0.2L          | 0.2L | 0.00                           | ≤±40                       | 0.00                           | ≤±40                       | /     | /                  | /    | /                  | 84.2~94.8    | 59~131             | -1.03        | ≤±30                                               | 合格 |
| 17 | 苯并(k) 荧<br>蒽     | mg/kg | /         | /      | 0.2L          | 0.2L | 0.00                           | ≤±40                       | 0.00                           | ≤±40                       | /     | /                  | /    | /                  | 87.2~87.3    | 74~114             | 0.13         | ≤±30                                               | 合格 |
| 18 | 崫                | mg/kg | /         | /      | 0.1L          | 0.1L | 0.00                           | ≤±40                       | 0.00                           | ≤±40                       | /     | /                  | /    | /                  | 91.1~97.9    | 54~122             | -2.42        | ≤±30                                               | 合格 |
| 19 | 二苯并(a,h)<br>蒽    | mg/kg | /         | /      | 0.1L          | 0.1L | 0.00                           | ≤±40                       | 0.00                           | ≤±40                       | /     | /                  | /    | /                  | 97.1~103     | 64~128             | -0.19        | ≤±30                                               | 合格 |

|    |                          |       |        | 空白测    | 定值         |       | 玖    | 2场平行                       | 实                              | 验室平行样   |      | 加标                 | 回收   |                    | 半挥发性<br>目标物加 |                    | 校准曲线中                     | ·间浓度点                                    |      |
|----|--------------------------|-------|--------|--------|------------|-------|------|----------------------------|--------------------------------|---------|------|--------------------|------|--------------------|--------------|--------------------|---------------------------|------------------------------------------|------|
|    |                          |       |        |        |            |       |      |                            |                                |         | 空白   | 加标                 | 样品   | 加标                 |              |                    | 相对误差/                     | 允许相对<br>误差/偏                             |      |
| 序号 | 检测项目                     | 空白 值单 | 运输空 白值 | 全程序空白值 | 实验室空白<br>值 | 空白要求  |      | 允许绝对偏差/<br>允许相对偏差<br>范围(%) | 绝对偏<br>差/相对<br>偏差<br>(%)范<br>围 | 允许相对偏差范 |      | 回收率<br>参考范<br>围(%) | (%)  | 回收率<br>参考范<br>围(%) |              | 回收率<br>控制范<br>围(%) | 偏差;与初始值的相对偏差;测定值与标准值比值(%) | 差; 允偏<br>差; 对偏<br>差; 定值与<br>标准值比<br>值(%) | 评价结果 |
| 20 | 茚并(1, 2,<br>3-cd)芘       | mg/kg | /      | /      | 0.1L       | 0.1L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 101~102      | 52~132             | 0.58                      | ≤±30                                     | 合格   |
| 21 | 萘                        | mg/kg | /      | /      | 0.09L      | 0.09L | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 73.5~74.5    | 39~95              | -0.48                     | ≤±30                                     | 合格   |
| 22 | 芘                        | mg/kg | /      | /      | 0.1L       | 0.1L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 88.5~88.6    | 77~117             | -2.38                     | ≤±30                                     | 合格   |
| 23 | 芴                        | mg/kg | /      | /      | 0.08L      | 0.08L | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 83.0~84.0    | 71~95              | -1.26                     | ≤±30                                     | 合格   |
| 24 | 苊                        | mg/kg | /      | /      | 0.1L       | 0.1L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 80.8~82.6    | 36~104             | -2.82                     | ≤±30                                     | 合格   |
| 25 | 苊烯 (二氢<br>苊)             | mg/kg | /      | /      | 0.09L      | 0.09L | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 69.6~81.6    | 56~92              | -4.39                     | ≤±30                                     | 合格   |
| 26 | 苯并[g,h,i]菲               | mg/kg | /      | /      | 0.1L       | 0.1L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 89.8~99.1    | 64~128             | -1.63                     | ≤±30                                     | 合格   |
| 27 | 荧蒽                       | mg/kg | /      | /      | 0.2L       | 0.2L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 83.4~86.1    | 63~119             | -3.50                     | ≤±30                                     | 合格   |
| 28 | 菲                        | mg/kg | /      | /      | 0.1L       | 0.1L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 83.4~83.5    | 60~140             | -2.41                     | ≤±30                                     | 合格   |
| 29 | 蒽                        | mg/kg | /      | /      | 0.1L       | 0.1L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 83.7~85.4    | 65~101             | -2.47                     | ≤±30                                     | 合格   |
| 30 | 邻苯二甲酸<br>(2-二乙基<br>己基) 酯 | mg/kg | 0.1L   | 0.2L   | 0.3L       | 0.4L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 82.0~83.4    | 29~165             | -2.65                     | ≤±30                                     | 合格   |
| 31 | 邻苯二甲酸<br>丁基苄基酯           | mg/kg | 0.2L   | 0.3L   | 0.4L       | 0.5L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 79.0~82.2    | 60~132             | 1.43                      | ≤±30                                     | 合格   |
| 32 | 邻苯二甲酸<br>二正辛酯            | mg/kg | 0.2L   | 0.3L   | 0.4L       | 0.5L  | 0.00 | ≤±40                       | 0.00                           | ≤±40    | /    | /                  | /    | /                  | 89.0~89.4    | 65~137             | -0.61                     | ≤±30                                     | 合格   |
| 33 | 苯                        | mg/kg | 1.9L   | 1.9L   | 1.9L       | 1.9L  | 0.00 | ≤±25                       | 0.00                           | ≤±25    | 118  | 70-130             | 121  | 70-130             | /            | /                  | 117                       | 80-120                                   | 合格   |
| 34 | 甲苯                       | mg/kg | 1.3L   | 1.3L   | 1.3L       | 1.3L  | 0.00 | ≤±25                       | 0.00                           | ≤±25    | 97.1 | 70-130             | 98.1 | 70-130             | /            | /                  | 101                       | 80-120                                   | 合格   |
| 35 | 乙苯                       | mg/kg | 1.2L   | 1.2L   | 1.2L       | 1.2L  | 0.00 | ≤±25                       | 0.00                           | ≤±25    | 107  | 70-130             | 104  | 70-130             | /            | /                  | 113                       | 80-120                                   | 合格   |
| 36 | 间二甲苯+对二甲苯                | mg/kg | 1.2L   | 1.2L   | 1.2L       | 1.2L  | 0.00 | ≤±25                       | 0.00                           | ≤±25    | 118  | 70-130             | 114  | 70-130             | /            | /                  | 120                       | 80-120                                   | 合格   |

|    |    |      |       |        | 空白测    | 定值         |      | 珂                              | 1场平行   | 实    | 验室平行样   |     | 加标          | 回收  |                    | 半挥发性<br>目标物加 |                    | 校准曲线中                  | 间浓度点         |      |
|----|----|------|-------|--------|--------|------------|------|--------------------------------|--------|------|---------|-----|-------------|-----|--------------------|--------------|--------------------|------------------------|--------------|------|
|    |    |      |       |        |        |            |      |                                |        |      |         | 空白  | 加标          | 样品  | 加标                 |              |                    | 相刈 误差/                 | 允许相对<br>误差/偏 |      |
| J. | 予号 | 检测项目 | 空白 值单 | 运输空 白值 | 全程序空白值 | 实验室空白<br>值 | 空白要求 | 绝对偏<br>差/相对<br>偏差<br>(%)范<br>围 | 允许相对偏差 |      | 允许相对偏差范 |     | 回收率 参考范围(%) | (%) | 回收率<br>参考范<br>围(%) | 围            | 回收率<br>控制范<br>围(%) | 对偏差;测<br>对偏差;测<br>定值与标 |              | 评价结果 |
|    | 37 | 邻二甲苯 | mg/kg | 1.2L   | 1.2L   | 1.2L       | 1.2L | 0.00                           | ≤±25   | 0.00 | ≤±25    | 113 | 70-130      | 109 | 70-130             | /            | /                  | 119                    | 80-120       | 合格   |
|    | 38 | 苯乙烯  | mg/kg | 1.1L   | 1.1L   | 1.1L       | 1.1L | 0.00                           | ≤±25   | 0.00 | ≤±25    | 113 | 70-130      | 110 | 70-130             | /            | /                  | 118                    | 80-120       | 合格   |

备注: 1、土壤半挥发性有机物目标物加标回收率控制范围为平均回收率(X)-2 倍相对标准偏差(2RSD)~平均回收率(X)+2 倍相对标准偏差(2RSD)。 2、土壤重金属和无机物校准曲线中间浓度点结果表述为相对误差/偏差;半挥发性有机物校准曲线中间浓度点结果表述为与初始值的相对偏差;挥发性有机物校准曲线中间浓度点结果表述为词完值与标准值比值

线中间浓度点结果表述为测定值与标准值比值。 3、pH、水分(湿)的平行样分析结果及判定表述为绝对偏差和允许绝对偏差;其他类的平行样分析结果及判定表述为相对偏差(%)和允许相对偏差(%)。

表 5.6-3 地下水样品质控措施数量及占比统计表

|                      |            |             |             | 现场质         | <br>f控      |           |     |     |     |    |          |     |      | 室质控 |     |       |          |    |            |
|----------------------|------------|-------------|-------------|-------------|-------------|-----------|-----|-----|-----|----|----------|-----|------|-----|-----|-------|----------|----|------------|
| 地下水检测项目              | 地下水<br>样品个 | 现场空白        | 运输空白        | 全程序空<br>白   | 设备空白        | 现场        | 平行  | 实验的 | 室空白 |    | 室平行<br>样 | 有证材 | 示准物质 | 加标  | 回收  | 替代物 回 | 物加标<br>收 |    | 曲线浓度<br>间值 |
| Ħ                    | 数          | 数量 (批<br>次) | 数量 (批<br>次) | 数量 (批<br>次) | 数量 (批<br>次) | 数量<br>(个) | 占比  | 数量  | 占比  | 数量 | 占比       | 数量  | 占比   | 数量  | 占比  | 数量    | 占比       | 数量 | 占比         |
| 耗氧量                  | 4          | 1           | 1           | 1           | 1           | /         | /   | 1   | 25% | /  | /        | 1   | 25%  | /   | /   | /     | /        | /  | /          |
| 氨氮                   | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | 1   | 25% | /     | /        | 1  | 25%        |
| 砷                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 2  | 50%        |
| 汞                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 2  | 50%        |
| 铅                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 镉                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 铜                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 镍                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 铬                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 锰                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 锌                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 锡                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 锑                    | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | 1   | 25%  | /   | /   | /     | /        | 4  | 100%       |
| 氟化物                  | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | /   | /    | /   | /   | /     | /        | 1  | 25%        |
| 可萃取性石油烃<br>(C10-C40) | 4          | 1           | 1           | 1           | 1           | /         | /   | 1   | 25% | 1  | 25%      | /   | /    | 2   | 50% | /     | /        | 1  | 25%        |
| 挥发性有机物               | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 2   | 50% | 1  | 25%      | /   | /    | 2   | 50% | /     | /        | 1  | 25%        |
| 半挥发性有机<br>物          | 4          | 1           | 1           | 1           | 1           | 1         | 25% | 1   | 25% | 1  | 25%      | /   | /    | 2   | 50% | /     | /        | 1  | 25%        |

### 表 5.6-4 地下水样品质控结果统计表

|      |       |        |        | 空白狐    | 削定值    |           |        | 珂                      | 见场平行                       | 实验   | <b>金室平行样</b>    | 加标               | 回收                 | 校准曲线中        | ·间浓度点                        |      |
|------|-------|--------|--------|--------|--------|-----------|--------|------------------------|----------------------------|------|-----------------|------------------|--------------------|--------------|------------------------------|------|
| 检测项目 | 空白 值单 | 现场空白值  | 运输空 白值 | 全程序空白值 | 设备空白值  | 实验室空白值    | 空白要求   | 绝对偏差/<br>相对偏差<br>(%)范围 | 允许绝对偏差/允<br>许相对偏差范围<br>(%) | 相对偏差 | 允许相对偏差范<br>围(%) | 回收率<br>(%)范<br>围 | 回收率参<br>考范围<br>(%) | 相对误差/相对偏差(%) | 允许相对<br>误差/允<br>许相对偏<br>差(%) | 评价结果 |
| 耗氧量  | mg/L  | 0.05L  | 0.05L  | 0.05L  | 0.05L  | 0.05L     | 0.05L  | /                      | /                          | /    | /               | /                | /                  | /            | /                            | 合格   |
| 氨氮   | mg/L  | 0.025L | 0.025L | 0.025L | 0.025L | 均为 0.025L | 0.025L | 0.55                   | ≤1.0mg/L: ≤±20             | 2.13 | ≤1.0mg/L: ≤±20  | 91               | 70~130             | 3.10         | ≤±10                         | 合格   |
|      |       |        |        |        |        |           |        | /                      | >1.0mg/L: ≤±15             | /    | >1.0mg/L: ≤±15  |                  |                    |              |                              |      |
| 砷    | μg/L  | 0.3L   | 0.3L   | 0.3L   | 0.3L   | 均为 0.3L   | 0.3L   | 0.00                   | ≤±20                       | 0.00 | ≤±20            | /                | /                  | -0.79~2.04   | ≤±20                         | 合格   |
| 汞    | μg/L  | 0.04L  | 0.04L  | 0.04L  | 0.04L  | 均为 0.04L  | 0.04L  | 0.00                   | ≤±20                       | 0.00 | ≤±20            | /                | /                  | 3.80~5.35    | ≤±20                         | 合格   |
| 铅    | μg/L  | 0.09L  | 0.09L  | 0.09L  | 0.09L  | 均为 0.09L  | 0.09L  | 0.00                   | ≤±20                       | 0.00 | ≤±20            | /                | /                  | -6.66~8.05   | ≤±10                         | 合格   |
| 镉    | μg/L  | 0.05L  | 0.05L  | 0.05L  | 0.05L  | 均为 0.05L  | 0.05L  | 0.00                   | ≤±20                       | 0.00 | ≤±20            | /                | /                  | -2.82~1.56   | ≤±10                         | 合格   |
| 铜    | μg/L  | 0.08L  | 0.08L  | 0.08L  | 0.08L  | 均为 0.08L  | 0.08L  | 2.13                   | ≤±20                       | 0.72 | ≤±20            | /                | /                  | -7.97~8.96   | ≤±10                         | 合格   |
| 镍    | μg/L  | 0.06L  | 0.06L  | 0.06L  | 0.06L  | 均为 0.06L  | 0.06L  | 0.00                   | ≤±20                       | 0.00 | ≤±20            | /                | /                  | -4.61~ -2.29 | ≤±10                         | 合格   |
| 铬    | μg/L  | 0.11L  | 0.11L  | 0.11L  | 0.11L  | 均为 0.11L  | 0.11L  | 12.0                   | ≤±20                       | 7.69 | ≤±20            | /                | /                  | -4.25~9.54   | ≤±10                         | 合格   |
| 锰    | μg/L  | 0.12L  | 0.12L  | 0.12L  | 0.12L  | 均为 0.12L  | 0.12L  | 8.97                   | ≤±20                       | 4.84 | ≤±20            | /                | /                  | 0.27~5.40    | ≤±10                         | 合格   |
| 锌    | μg/L  | 0.67L  | 0.67L  | 0.67L  | 0.67L  | 均为 0.67L  | 0.67L  | 4.39                   | ≤±20                       | 1.16 | ≤±20            | /                | /                  | -3.06~9.35   | ≤±10                         | 合格   |
| 锡    | μg/L  | 0.08L  | 0.08L  | 0.08L  | 0.08L  | 均为 0.08L  | 0.08L  | 0.00                   | ≤±20                       | 0.00 | ≤±20            | /                | /                  | -9.04~ -0.78 | ≤±10                         | 合格   |
| 锑    | μg/L  | 0.15L  | 0.15L  | 0.15L  | 0.15L  | 均为 0.15L  | 0.15L  | 1.96                   | ≤±20                       | 0.00 | ≤±20            | /                | /                  | -5.25~3.25   | ≤±10                         | 合格   |
| 氟化物  | mg/L  | 0.005L | 0.005L | 0.005L | 0.005L | 均为 0.005L | 0.005L | 0                      | ≤±10                       | 3.57 | ≤±10            | /                | /                  | 7.80         | ≤±10                         | 合格   |

|                      |               | 空白测定值            |                  |                  |                  |                  |                  | 珂                      | 见场平行                       | 实验   | <b>金室平行样</b>    | 加标         | 回收         | 校准曲线中         | 『间浓度点                        |      |
|----------------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|----------------------------|------|-----------------|------------|------------|---------------|------------------------------|------|
| 检测项目                 | 空白<br>值单<br>位 | 现场空 白值           | 运输空 白值           | 全程序空白值           | 设备空白值            | 实验室空白 值          | 空白要求             | 绝对偏差/<br>相对偏差<br>(%)范围 | 允许绝对偏差/允<br>许相对偏差范围<br>(%) | 相对偏差 | 允许相对偏差范<br>围(%) | 回收率 (%) 范围 | 回收率参考范围(%) | 相对误差/相对偏差 (%) | 允许相对<br>误差/允<br>许相对偏<br>差(%) | 评价结果 |
| 可萃取性石                |               |                  |                  |                  |                  |                  |                  |                        |                            |      |                 |            |            |               |                              |      |
| 油烃                   | mg/L          | 0.01L            | 0.01L            | 0.01L            | 0.01L            | 0.01L            | 0.01L            | /                      | /                          | 4.11 | ≤±25            | 85.7~86.6  | 70~120     | -1.39         | ≤±10                         | 合格   |
| (C10-C40)<br>苯并(a) 蒽 | a/I           | 0.012L           | 0.012L           | 0.012L           | 0.012L           | 0.012L           | 0.012L           | /                      | /                          | 0.00 | <±10            | 101~106    | 60~120     | 2.26          | <110                         | 合格   |
| 苯并(a) 花              | μg/L<br>μg/L  | 0.012L<br>0.004L | 0.012L<br>0.004L | 0.012L<br>0.004L | 0.012L<br>0.004L | 0.012L<br>0.004L | 0.012L<br>0.004L | /                      | /                          | 0.00 | ≤±10<br>≤±10    | 96.7~97.9  | 60~120     | 3.26          | ≤±10<br>≤±10                 | 合格   |
| 苯并 (b) 荥<br>蒽        | μg/L          | 0.004L           | 0.004L           | 0.004L           | 0.004L           | 0.004L           | 0.004L           | /                      | /                          | 0.00 | <u>_</u> =10    | 107~109    | 60~120     | 8.56          | <u>_</u> =10                 | 合格   |
| 苯并(k) 荧<br>蔥         | μg/L          | 0.004L           | 0.004L           | 0.004L           | 0.004L           | 0.004L           | 0.004L           | /                      | /                          | 0.00 | ≤±10            | 100~103    | 60~120     | 1.02          | ≤±10                         | 合格   |
| 崫                    | μg/L          | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | /                      | /                          | 0.00 | ≤±10            | 94.5~102   | 60~120     | -0.98         | ≤±10                         | 合格   |
| 二苯并(a, h)<br>蒽       | μg/L          | 0.003L           | 0.003L           | 0.003L           | 0.003L           | 0.003L           | 0.003L           | /                      | /                          | 0.00 | ≤±10            | 103~106    | 60~120     | 0.65          | ≤±10                         | 合格   |
| 茚并(1, 2,<br>3-cd)芘   | μg/L          | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | /                      | /                          | 0.00 | ≤±10            | 101~109    | 60~120     | 3.10          | ≤±10                         | 合格   |
| 萘                    | μg/L          | 0.012L           | 0.012L           | 0.012L           | 0.012L           | 0.012L           | 0.012L           | /                      | /                          | 0.00 | ≤±10            | 104~106    | 60~120     | 4.59          | ≤±10                         | 合格   |
| 芘                    | μg/L          | 0.016L           | 0.016L           | 0.016L           | 0.016L           | 0.016L           | 0.016L           | /                      | /                          | 0.00 | ≤±10            | 96.8~97.4  | 60~120     | 1.43          | ≤±10                         | 合格   |
| 芴                    | μg/L          | 0.013L           | 0.013L           | 0.013L           | 0.013L           | 0.013L           | 0.013L           | /                      | /                          | 0.00 | ≤±10            | 107~108    | 60~120     | 6.20          | ≤±10                         | 合格   |
| 苊                    | μg/L          | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | /                      | /                          | 0.00 | ≤±10            | 105~107    | 60~120     | 4.41          | ≤±10                         | 合格   |
| 苊烯 (二氢<br>苊)         | μg/L          | 0.008L           | 0.008L           | 0.008L           | 0.008L           | 0.008L           | 0.008L           | /                      | /                          | 0.00 | ≤±10            | 107~108    | 60~120     | 6.99          | ≤±10                         | 合格   |
| 苯并[g,h,i]菲           | μg/L          | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | 0.005L           | /                      | /                          | 0.00 | ≤±10            | 103~105    | 60~120     | 2.44          | ≤±10                         | 合格   |

|                           |       |        |           | 空白测    | <b>則定值</b> |                              |                        | 玥                      | 见场平行                       | 实验            | <b>验室平行样</b>    | 加标               | 回收         | 校准曲线中         | 叩陀度点                         |      |
|---------------------------|-------|--------|-----------|--------|------------|------------------------------|------------------------|------------------------|----------------------------|---------------|-----------------|------------------|------------|---------------|------------------------------|------|
| 检测项目                      | 空白 值单 | 现场空 白值 | 运输空<br>白值 | 全程序空白值 | 设备空白<br>值  | 实验室空白<br>值                   | 空白要求                   | 绝对偏差/<br>相对偏差<br>(%)范围 | 允许绝对偏差/允<br>许相对偏差范围<br>(%) | 相对偏差<br>(%)范围 | 允许相对偏差范<br>围(%) | 回收率<br>(%)范<br>围 | 回收率参考范围(%) | 相对误差/相对偏差 (%) | 允许相对<br>误差/允<br>许相对偏<br>差(%) | 评价结果 |
| 荧蒽                        | μg/L  | 0.005L | 0.005L    | 0.005L | 0.005L     | 0.005L                       | 0.005L                 | /                      | /                          | 0.00          | ≤±10            | 102~106          | 60~120     | 3.40          | ≤±10                         | 合格   |
| 菲                         | μg/L  | 0.012L | 0.012L    | 0.012L | 0.012L     | 0.012L                       | 0.012L                 | /                      | /                          | 0.00          | ≤±10            | 106~107          | 60~120     | 7.42          | ≤±10                         | 合格   |
| 蒽                         | μg/L  | 0.004L | 0.004L    | 0.004L | 0.004L     | 0.004L                       | 0.004L                 | /                      | /                          | 0.00          | ≤±10            | 106              | 60~120     | 5.24          | ≤±10                         | 合格   |
| 邻苯二甲酸<br>二正辛酯             | μg/L  | 0.2L   | 0.2L      | 0.2L   | 0.2L       | 0.2L                         | 0.2L                   | 0.00                   | ≤±10                       | 0.00          | ≤±10            | 75.1~78.4        | 70~120     | -4.91         | ≤±10                         | 合格   |
| 邻苯二甲<br>酸丁基苄<br>基酯        | mg/L  | /      | /         | /      | /          | 均为<br>2.5×10 <sup>-4</sup> L | 2.5×10 <sup>-4</sup> L | 0.00                   | ≤±50                       | 0.00          | ≤±50            | /                | /          | -1.87         | ≤±10                         | 合格   |
| 邻苯二甲<br>酸二 (2-乙<br>基己基) 酯 | -     | /      | /         | /      | /          | 均为<br>4.1×10 <sup>-4</sup> L | 4.1×10 <sup>-4</sup> L | 0.00                   | ≤±50                       | 0.00          | ≤±50            | /                | /          | -0.82         | ≤±10                         | 合格   |
| 苯                         | μg/L  | 1.4L   | 1.4L      | 1.4L   | 1.4L       | 1.4L                         | 1.4L                   | 0.00                   | ≤±30                       | 0.00          | ≤±30            | 96.5~99.3        | 80~120     | 0.04          | ≤±20                         | 合格   |
| 甲苯                        | μg/L  | 1.4L   | 1.4L      | 1.4L   | 1.4L       | 1.4L                         | 1.4L                   | 0.00                   | ≤±30                       | 0.00          | ≤±30            | 99.6~103         | 80~120     | 2.06          | ≤±20                         | 合格   |
| 乙苯                        | μg/L  | 0.8L   | 0.8L      | 0.8L   | 0.8L       | 0.8L                         | 0.8L                   | 0.00                   | ≤±30                       | 0.00          | ≤±30            | 101~105          | 80~120     | 2.48          | ≤±20                         | 合格   |
| 间二甲苯+ 对二甲苯                | μg/L  | 2.2L   | 2.2L      | 2.2L   | 2.2L       | 2.2L                         | 2.2L                   | 0.00                   | ≤±30                       | 0.00          | ≤±30            | 101~105          | 80~120     | 2.34          | ≤±20                         | 合格   |
| 邻二甲苯                      | μg/L  | 1.4L   | 1.4L      | 1.4L   | 1.4L       | 1.4L                         | 1.4L                   | 0.00                   | ≤±30                       | 0.00          | ≤±30            | 98.9~102         | 80~120     | 1.70          | ≤±20                         | 合格   |
| 苯乙烯                       | μg/L  | 0.6L   | 0.6L      | 0.6L   | 0.6L       | 0.6L                         | 0.6L                   | 0.00                   | ≤±30                       | 0.00          | ≤±30            | 97.9~104         | 80~120     | 2.92          | ≤±20                         | 合格   |

备注:地下水中砷、汞、挥发性有机物的校准曲线中间浓度点结果和判定表述为相对偏差和允许相对偏差;其他指标的校准曲线中间浓度点结果和判定表述为相对误差和允许相对误差。

表 5.6-4 土壤替代物加标回收率统计结果

| 类别 | 项目         | 替代物   | 数量 | 回收率<br>(%) | 回收率参<br>考范围<br>(%) | 评价结果 |
|----|------------|-------|----|------------|--------------------|------|
|    | 上<br>挥发性有机 | 二溴氟甲烷 | 14 | 123~129    | 70-130             | 合格   |
| 土壤 | 物          | 甲苯-D8 | 14 | 93.5~105   | 70-130             | 合格   |
|    |            | 4-溴氟苯 | 14 | 87.8~100   | 70-130             | 合格   |

备注:土壤半挥发性有机物替代物加标回收率参考范围为回收率平均值(X)-3倍相对标准偏差(3RSD)~回收率平均值(X)+3倍相对标准偏差(3RSD)。

# 5.6.6 质量控制结论

综合以上统计结果可知,本项目按技术方案和相关规范标准对土壤、地下水 分别进行空白试验,精确度、准确度试验,测定结果均在控制范围内,符合相关 技术规范的要求。

- 6、监测结果分析与评价
- 6.1 土壤自行监测结果分析
- 6.1.1 土壤各点位监测结果统计

本次 2023 年 12 月 29 日自行监测共设置 6 个表层土壤监测点位,共采集 6 个土壤样品,对土壤检测结果进行统计,详见表 6.1-1。

表 6.1-1 土壤样品监测结果统计一览表

|                  |                                | 0.1-1 工物作用皿物和不规件 处4            | <u> </u>                       |       |       |
|------------------|--------------------------------|--------------------------------|--------------------------------|-------|-------|
| ₩ 15 F           |                                | 检测结果(2023.12.29)               |                                | 参考限   | 单位    |
| 检测项目             | T1 (E110.823053°, N21.689033°) | T2 (E110.822322°, N21.689850°) | T3 (E110.822369°, N21.690418°) | 值     | 中型.   |
| 重金属等采样断面深度       | 0-20                           | 0-20                           | 0-20                           |       | cm    |
| 挥发性有机物采样断面深<br>度 | 5                              | 8                              | 8                              |       | cm    |
| 氟化物              | 658                            | 711                            | 849                            |       | mg/kg |
| 砷                | 3.40                           | 3.03                           | 3.55                           | 60    | mg/kg |
| 汞                | 0.062                          | 0.058                          | 0.048                          | 38    | mg/kg |
| 铅                | 55.4                           | 19.3                           | 83.0                           | 800   | mg/kg |
| 镉                | 0.17                           | 0.24                           | 0.18                           | 65    | mg/kg |
| 铬                | 20                             | 22                             | 20                             |       | mg/kg |
| 锌                | 90                             | 72                             | 76                             |       | mg/kg |
| 铜                | 7                              | 5                              | 5                              | 18000 | mg/kg |
| 镍                | 16                             | 17                             | 13                             | 900   | mg/kg |
| 锰                | 245                            | 157                            | 22.8                           |       | mg/kg |
| 锑                | 0.3L                           | 0.3L                           | 0.3L                           | 180   | mg/kg |
| 锡α               | 32                             | 27                             | 29                             |       | mg/kg |
| 苯                | 0.0019L                        | 0.0019L                        | 0.0019L                        | 4     | mg/kg |
| 乙苯               | 0.0012L                        | 0.0012L                        | 0.0012L                        | 28    | mg/kg |
| 苯乙烯              | 0.0011L                        | 0.0011L                        | 0.0011L                        | 1290  | mg/kg |
| 甲苯               | 0.0013L                        | 0.0013L                        | 0.0013L                        | 1200  | mg/kg |
| 间,对-二甲苯          | 0.0012L                        | 0.0012L                        | 0.0012L                        | 570   | mg/kg |
| 邻-二甲苯            | 0.0012L                        | 0.0012L                        | 0.0012L                        | 640   | mg/kg |

接上表:

|                                         |                                   | 检测结果(2023.12.29)                  |                               |      |       |
|-----------------------------------------|-----------------------------------|-----------------------------------|-------------------------------|------|-------|
| 检测项目                                    | T1 (E110.823053°,<br>N21.689033°) | T2 (E110.822322°,<br>N21.689850°) | T3(E110.822369°, N21.690418°) | 参考限值 | 单位    |
| 苯并[a]蒽                                  | 0.1L                              | 0.1L                              | 0.1L                          | 15   | mg/kg |
| 苯并[a]芘                                  | 0.1L                              | 0.1L                              | 0.1L                          | 1.5  | mg/kg |
| 苯并[b]荧蒽                                 | 0.2L                              | 0.2L                              | 0.2L                          | 15   | mg/kg |
| 苯并[k]荧蒽                                 | 0.1L                              | 0.1L                              | 0.1L                          | 151  | mg/kg |
| 崫                                       | 0.1L                              | 0.1L                              | 0.1L                          | 1293 | mg/kg |
| 二苯并[a,h]蒽                               | 0.1L                              | 0.1L                              | 0.1L                          | 1.5  | mg/kg |
| 茚并[1,2,3-cd]芘                           | 0.1L                              | 0.1L                              | 0.1L                          | 15   | mg/kg |
| 萘                                       | 0.09L                             | 0.09L                             | 0.09L                         | 70   | mg/kg |
| 苊烯                                      | 0.09L                             | 0.09L                             | 0.09L                         |      | mg/kg |
| 苊                                       | 0.1L                              | 0.1L                              | 0.1L                          |      | mg/kg |
| 芴                                       | 0.08L                             | 0.08L                             | 0.08L                         |      | mg/kg |
| 菲                                       | 0.1L                              | 0.1L                              | 0.1L                          |      | mg/kg |
| 蒽                                       | 0.1L                              | 0.1L                              | 0.1L                          |      | mg/kg |
| 荧蒽                                      | 0.2L                              | 0.2L                              | 0.2L                          |      | mg/kg |
| 芘                                       | 0.1L                              | 0.1L                              | 0.1L                          |      | mg/kg |
| 邻苯二甲酸二(2-乙基己基)<br>酯                     | 0.1L                              | 0.1L                              | 0.1L                          | 121  | mg/kg |
| 邻苯二甲酸丁基苄酯                               | 0.2L                              | 0.2L                              | 0.2L                          | 900  | mg/kg |
| 邻苯二甲酸二正辛酯                               | 0.2L                              | 0.2L                              | 0.2L                          | 2812 | mg/kg |
| 石油烃 (C <sub>10</sub> -C <sub>40</sub> ) | 104                               | 58                                | 78                            | 4500 | mg/kg |

接上表:

| 12.2.            |                                |                                |                                |              |        |
|------------------|--------------------------------|--------------------------------|--------------------------------|--------------|--------|
| <b>松剛電</b> 口     |                                | 检测结果(2023.12.29)               |                                | <b>乡</b> 老阳店 | 出<br>合 |
| 检测项目             | T4 (E110.823875°, N21.689312°) | T5 (E110.823166°, N21.690612°) | T6 (E110.823841°, N21.690276°) | 参考限值         | 单位     |
| 重金属等采样断面深度       | 0-20                           | 0-20                           | 0-20                           |              | cm     |
| 挥发性有机物采样断面深<br>度 | 10                             | 10                             | 12                             |              | cm     |
| 氟化物              | 888                            | 743                            | 812                            |              | mg/kg  |
| 砷                | 6.04                           | 9.95                           | 8.50                           | 60           | mg/kg  |
| 汞                | 0.080                          | 0.316                          | 0.147                          | 38           | mg/kg  |
| 铅                | 279                            | 26.1                           | 37.8                           | 800          | mg/kg  |
| 镉                | 0.41                           | 0.27                           | 0.31                           | 65           | mg/kg  |
| 铬                | 32                             | 37                             | 36                             |              | mg/kg  |
| 锌                | 288                            | 118                            | 269                            |              | mg/kg  |
| 铜                | 35                             | 18                             | 26                             | 18000        | mg/kg  |
| 镍                | 25                             | 26                             | 28                             | 900          | mg/kg  |
| 锰                | 23.8                           | 91.9                           | 185                            |              | mg/kg  |
| 锑                | 0.3L                           | 0.3L                           | 0.3L                           | 180          | mg/kg  |
| 锡α               | 23                             | 20                             | 17                             |              | mg/kg  |
| 苯                | 0.0019L                        | 0.0019L                        | 0.0019L                        | 4            | mg/kg  |
| 乙苯               | 0.0012L                        | 0.0012L                        | 0.0012L                        | 28           | mg/kg  |
| 苯乙烯              | 0.0011L                        | 0.0011L                        | 0.0011L                        | 1290         | mg/kg  |
| 甲苯               | 0.0013L                        | 0.0013L                        | 0.0013L                        | 1200         | mg/kg  |
| 间,对-二甲苯          | 0.0012L                        | 0.0012L                        | 0.0012L                        | 570          | mg/kg  |
| 邻-二甲苯            | 0.0012L                        | 0.0012L                        | 0.0012L                        | 640          | mg/kg  |

接上表:

| 检测项目                                    |                                | 检测结果(2023.12.29)                                                        |                                | 参考限值    | 单位         |
|-----------------------------------------|--------------------------------|-------------------------------------------------------------------------|--------------------------------|---------|------------|
| 位例切り目                                   | T4 (E110.823875°, N21.689312°) | T5 (E110.823166°, N21.690612°)                                          | T6 (E110.823841°, N21.690276°) | 多写限阻    | <b>半</b> 型 |
| 苯并[a]蒽                                  | 0.1L                           | 0.1L                                                                    | 0.1L                           | 15      | mg/kg      |
| 苯并[a]芘                                  | 0.1L                           | 0.1L                                                                    | 0.1L                           | 1.5     | mg/kg      |
| 苯并[b]荧蒽                                 | 0.2L                           | 0.2L                                                                    | 0.2L                           | 15      | mg/kg      |
| 苯并[k]荧蒽                                 | 0.1L                           | 0.1L                                                                    | 0.1L                           | 151     | mg/kg      |
| 薜                                       | 0.1L                           | 0.1L                                                                    | 0.1L                           | 1293    | mg/kg      |
| 二苯并[a,h]蒽                               | 0.1L                           | 0.1L                                                                    | 0.1L                           | 1.5     | mg/kg      |
| 茚并[1,2,3-cd]芘                           | 0.1L                           | 0.1L                                                                    | 0.1L                           | 15      | mg/kg      |
| 萘                                       | 0.09L                          | 0.09L                                                                   | 0.09L                          | 70      | mg/kg      |
| 苊烯                                      | 0.09L                          | 0.09L                                                                   | 0.09L                          |         | mg/kg      |
| 苊                                       | 0.1L                           | 0.1L                                                                    | 0.1L                           |         | mg/kg      |
| 芴                                       | 0.08L                          | 0.08L                                                                   | 0.08L                          |         | mg/kg      |
| 菲                                       | 0.1L                           | 0.1L                                                                    | 0.1L                           |         | mg/kg      |
| 蒽                                       | 0.1L                           | 0.1L                                                                    | 0.1L                           |         | mg/kg      |
| 荧蒽                                      | 0.2L                           | 0.2L                                                                    | 0.2L                           |         | mg/kg      |
| 芘                                       | 0.1L                           | 0.1L                                                                    | 0.1L                           |         | mg/kg      |
| 邻苯二甲酸二(2-乙基己基)<br>酯                     | 0.1L                           | 0.1L                                                                    | 0.1L                           | 121     | mg/kg      |
| 邻苯二甲酸丁基苄酯                               | 0.2L                           | 0.2L                                                                    | 0.2L                           | 900     | mg/kg      |
| 邻苯二甲酸二正辛酯                               | 0.2L                           | 0.2L                                                                    | 0.2L                           | 2812    | mg/kg      |
| 石油烃 (C <sub>10</sub> -C <sub>40</sub> ) | 42                             | 60                                                                      | 104                            | 4500    | mg/kg      |
| 备注                                      | 2.参考限值由客户提供,参考《土选值;            | 限; "——"对应标准中无该项限值或 壤环境质量 建设用地土壤污染风度 建设用地土壤污染风度 全 (资质编号: 202319122787) 沒 | 验管控标准》(试行)(GB 36600-           | 2018)第二 | 类用地筛       |

## 6.1.2 土壤污染物检测结果分析

本次自行监测土壤监测项目选取特征污染物 37 项(铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯乙烯)、多环 芳烃 16 种(苯并(a)蒽、苯并(a)芘、苯并(b)荧蒽、苯并(k)荧蒽、菌、二苯并(a,h) 蒽、茚并(1,2,3-c,d)芘、萘、芘、芴、苊、苊烯、苯并[g,h,i]莊、荧蒽、菲、蒽)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、石油烃(C10-C40)、氟化物进行监测分析。土壤特征污染物检测结果评价表详见表 6.1-2。

表 6.1-2 土壤中特征污染物检测结果统计与评价表

|         |                   |    |       |         |         | 超筛  | 超筛  | 样品  |         |
|---------|-------------------|----|-------|---------|---------|-----|-----|-----|---------|
| right I | 내는 '에너' 중 그       | 样品 | 样品检出数 | 最小值     | 最大值     | 选值  | 选值  | 检出  | 标准限值    |
| 序号      | 监测项目              | 数量 | 量     | (mg/kg) | (mg/kg) | 数量  | 率   | 率   | (mg/kg) |
|         |                   |    |       |         |         | (个) | (%) | (%) |         |
| 1       | 砷                 | 6  | 6     | 3.03    | 9.95    | 0   | 0   | 100 | 60      |
| 2       | 汞                 | 6  | 6     | 0.048   | 0.306   | 0   | 0   | 100 | 38      |
| 3       | 铅                 | 6  | 6     | 19.3    | 279     | 0   | 0   | 100 | 800     |
| 4       | 镉                 | 6  | 6     | 0.17    | 0.41    | 0   | 0   | 100 | 65      |
| 5       | 铬                 | 6  | 6     | 20      | 37      | 0   | 0   | 100 | 3740*   |
| 6       | 铜                 | 6  | 6     | 5       | 35      | 0   | 0   | 100 | 18000   |
| 7       | 锌                 | 6  | 6     | 72      | 288     | 0   | 0   | 100 | 134000* |
| 8       | 锰                 | 6  | 6     | 22.8    | 245     | 0   | 0   | 100 | 16600*  |
| 9       | 镍                 | 6  | 6     | 13      | 28      | 0   | 0   | 100 | 900     |
| 10      | 锡                 | 6  | 6     | 17      | 32      | 0   | 0   | 100 | 268000* |
| 11      | 锑                 | 6  | 0     | 0.3L    | 0.3L    | 0   | 0   | 0   | 180     |
| 12      | 石油烃               | 6  | 6     | 42      | 104     | 0   | 0   | 100 | 4500    |
| 12      | $(C_{10}-C_{40})$ | 0  | 0     | 42      | 104     | U   | U   | 100 | 4300    |
| 13      | 萘                 | 6  | 0     | 0.09L   | 0.09L   | 0   | 0   | 0   | 70      |
| 14      | 苊                 | 6  | 0     | 0.1L    | 0.1L    | 0   | 0   | 0   | 15100   |
| 15      | 芴                 | 6  | 0     | 0.08L   | 0.08L   | 0   | 0   | 0   | 10000*  |
| 16      | 苊烯                | 6  | 0     | 0.09L   | 0.09L   | 0   | 0   | 0   | 14300*  |
| 17      | 菲                 | 6  | 0     | 0.1L    | 0.1L    | 0   | 0   | 0   | 7140*   |
| 18      | 蒽                 | 6  | 0     | 0.1L    | 0.1L    | 0   | 0   | 0   | 7530*   |
| 19      | 荧蒽                | 6  | 0     | 0.2L    | 0.2L    | 0   | 0   | 0   | 10000*  |
| 20      | 芘                 | 6  | 0     | 0.1L    | 0.1L    | 0   | 0   | 0   | 7530*   |
| 21      | 苯并(a) 蒽           | 6  | 0     | 0.1L    | 0.1L    | 0   | 0   | 0   | 15      |
| 22      | 崫                 | 6  | 0     | 0.1L    | 0.1L    | 0   | 0   | 0   | 1293    |

| 23 | 苯并(b) 荧蒽                | 6 | 0 | 0.2L    | 0.2L    | 0 | 0 | 0 | 15    |
|----|-------------------------|---|---|---------|---------|---|---|---|-------|
| 24 | 苯并(k) 荧蒽                | 6 | 0 | 0.2L    | 0.2L    | 0 | 0 | 0 | 151   |
| 25 | 苯并(a) 芘                 | 6 | 0 | 0.1L    | 0.1L    | 0 | 0 | 0 | 1.5   |
| 26 | 二苯并 (a,h) 蒽             | 6 | 0 | 0.1L    | 0.1L    | 0 | 0 | 0 | 1.5   |
| 27 | 苯并 (g,h,i) 苝            | 6 | 0 | 0.1L    | 0.1L    | 0 | 0 | 0 | 1.5   |
| 28 | 茚并(1,2,3-c,d)<br>芘      | 6 | 0 | 0.1L    | 0.1L    | 0 | 0 | 0 | 15    |
| 29 | 氟化物                     | 6 | 6 | 658     | 888     | 0 | 0 | 0 | 17000 |
| 30 | 苯                       | 6 | 0 | 0.0019L | 0.0019L | 0 | 0 | 0 | 4     |
| 31 | 甲苯                      | 6 | 0 | 0.0013L | 0.0013L | 0 | 0 | 0 | 1200  |
| 32 | 乙苯                      | 6 | 0 | 0.0012L | 0.0012L | 0 | 0 | 0 | 28    |
| 33 | 间,对-二甲苯                 | 6 | 0 | 0.0012L | 0.0012L | 0 | 0 | 0 | 570   |
| 33 | 邻二甲苯                    | 6 | 0 | 0.0012L | 0.0012L | 0 | 0 | 0 | 640   |
| 34 | 苯乙烯                     | 6 | 0 | 0.0011L | 0.0011L | 0 | 0 | 0 | 1290  |
| 35 | 邻苯二甲酸二<br>正辛酯           | 6 | 0 | 0.2L    | 0.2L    | 0 | 0 | 0 | 2812  |
| 36 | 邻苯二甲酸二<br>(2-乙基己基)<br>酯 | 6 | 0 | 0.1L    | 0.1L    | 0 | 0 | 0 | 121   |
| 37 | 邻苯二甲酸丁<br>基苄基酯          | 6 | 0 | 0.2L    | 0.2L    | 0 | 0 | 0 | 900   |

**备注:** "L"表示检测结果低于方法检出限,"\*"表示根据《建设用地土壤污染风险评估技术导则》(HJ 25.3-2019)推导出来的值。

本次自行监测结果显示,6个土壤样品中,25项特征污染物(锑、多环芳烃16种、苯系物5种、邻苯二甲酸酯类3种)未检出,其他12项特征污染物均有不同程度的检出。砷的检出浓度在3.03~9.95mg/kg范围内、汞的检出浓度在0.048~0.306mg/kg范围内、铅的检出浓度在19.3~279mg/kg范围内、镉的检出浓度在0.17~0.41mg/kg范围内、总铬的检出浓度在20~37mg/kg范围内、铜的检出浓度在5~35mg/kg范围内、锌的检出浓度在72~288mg/kg、锰的检出浓度在22.8~245mg/kg范围内、镍的检出浓度在13~28mg/kg范围内、锡的检出浓度在17~32mg/kg范围内、石油烃(C10-C40)的检出浓度在42~104mg/kg范围内、氟化物的检出浓度在658~888mg/kg范围内,各点位所监测特征污染物指标的检出浓度均低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中的第二类用地的风险筛选值和推导值。

# 6.2 地下水自行监测结果分析

# 6.2.1 地下水各点位监测结果统计

本次 2023 年 12 月 29 日共采集 4 个地下水样品,监测 39 项指标,包括特征污染物 37 项和上一年度超标项目 3 项(锰、氨氮、耗氧量)。地下水检测结果统计见表 6.2-1。

表 6.2-1 地下水样品检测结果统计表

|                 |                                        | 检 测 结 果(采样                             | 日期: 2023.12.29)                        |                                         |        |      |
|-----------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|--------|------|
| 检测项目            | W1<br>(E 110.822055°, N<br>21.690051°) | W2<br>(E 110.822335°, N<br>21.690333°) | W3<br>(E 110.822993°, N<br>21.690428°) | BJ1<br>(E 110.824188°, N<br>21.688693°) | 参考限值   | 单位   |
| 感官状态描述          | 灰、无气味、浊                                | 黄、无气味、浊                                | 黄、无气味、浊                                | 黄、无气味、浊                                 |        |      |
| 氟化物             | 0.28                                   | 0.29                                   | 0.26                                   | 0.27                                    | ≤1.0   | mg/L |
| 高锰酸盐指数(耗氧<br>量) | 2.30                                   | 2.12                                   | 1.97                                   | 2.06                                    | ≤3.0   | mg/L |
| 氨氮              | 0.185                                  | 0.139                                  | 0.167                                  | 0.129                                   | ≤0.50  | mg/L |
| 砷               | 0.0003L                                | 0.0003L                                | 0.0003L                                | 0.0003L                                 | ≤0.01  | mg/L |
| 汞               | 0.00004L                               | 0.00004L                               | 0.00004L                               | 0.00004L                                | ≤0.001 | mg/L |
| 铅               | 0.00021                                | 0.00036                                | 0.00009L                               | 0.00247                                 | ≤0.01  | mg/L |
| 镉               | 0.00005L                               | 0.00005L                               | 0.00005L                               | 0.00087                                 | ≤0.005 | mg/L |
| 铜               | 0.00071                                | 0.00161                                | 0.00257                                | 0.00033                                 | ≤1.00  | mg/L |
| 铬               | 0.00012                                | 0.00036                                | 0.00011L                               | 0.00131                                 |        | mg/L |
| 镍               | 0.00006L                               | 0.00006L                               | 0.00006L                               | 0.00006L                                | ≤0.02  | mg/L |
| 锡               | 0.00008L                               | 0.00015                                | 0.00008L                               | 0.0305                                  |        | mg/L |
| 锑               | 0.00026                                | 0.00066                                | 0.00014                                | 0.00175                                 | ≤0.005 | mg/L |
| 锰               | 0.00223                                | 0.0239                                 | 0.0530                                 | 0.0145                                  | ≤0.10  | mg/L |
| 锌               | 0.00227                                | 0.00800                                | 0.0112                                 | 0.0229                                  | ≤1.00  | mg/L |

接上表:

| 检测项目        |         | W1 W2 W3 BJ1 (E 110.822055°, N (E 110.822335°, N (E 110.822993°, N (E 110.824188°, N 21.690051°) 21.690333°) 21.690428°) 21.688693°) |               | 参考限值   | 単位            |       |      |  |
|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|---------------|-------|------|--|
| 苯           |         | 1.4L                                                                                                                                 | 1.4L          | 1.4L   | 1.4L          | ≤10.0 | μg/L |  |
| 甲苯          |         | 1.4L                                                                                                                                 | 1.4L          | 1.4L   | 1.4L          | ≤700  | μg/L |  |
| 二甲苯         | 间,对-二甲苯 | 2.2L                                                                                                                                 | 2.2L          | 2.2L   | 2.2L          | ≤500  | μg/L |  |
|             | 邻-二甲苯   | 1.4L                                                                                                                                 | 1.4L          | 1.4L   | 1.4L          |       |      |  |
|             | 乙苯      | 0.8L                                                                                                                                 | 0.8L          | 0.8L   | 0.8L          | ≤300  | μg/L |  |
|             | 苯乙烯     | 0.6L                                                                                                                                 | 0.6L          | 0.6L   | 0.6L          | ≤20.0 | μg/L |  |
| 萘           |         | 0.012L                                                                                                                               | 0.012L        | 0.012L | 0.012L        | ≤100  | μg/L |  |
| 苊           |         | 0.005L                                                                                                                               | 0.005L        | 0.005L | 0.005L        |       | μg/L |  |
|             | 芴       | 0.013L                                                                                                                               | 0.013L        | 0.013L | 0.013L        |       | μg/L |  |
| 苊烯<br>菲     |         | 0.008L                                                                                                                               | 0.008L        | 0.008L | 0.008L        |       | μg/L |  |
|             |         | 0.012L                                                                                                                               | 0.012L        | 0.012L | 0.012L        |       | μg/L |  |
| 蔥           |         | 0.004L                                                                                                                               | 0.004L        | 0.004L | 0.004L        | ≤1800 | μg/L |  |
| 荧蒽          |         | 0.005L                                                                                                                               | 0.005L        | 0.005L | 0.005L        | ≤240  | μg/L |  |
| 芘<br>苯并[a]蒽 |         | 0.016L                                                                                                                               | 0.016L 0.016L |        | 0.016L        |       | μg/L |  |
|             |         | 0.012L                                                                                                                               | 0.012L        | 0.012L | 0.012L 0.012L |       | μg/L |  |
|             |         | 0.005L                                                                                                                               | 0.005L        | 0.005L | 0.005L        |       | µg/L |  |
|             |         | 0.004L                                                                                                                               | 0.004L        | 0.004L | 0.004L        | ≤4.0  | μg/L |  |

接上表:

|                                         |                                                                                                                                                                             |                        | 单位                     |                        |       |                      |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|-------|----------------------|--|--|--|
| 检测项目                                    | W1 W2 W3 BJ1<br>(E 110.822055°, N (E 110.822335°, N (E 110.822993°, N (E 110.824188°, N 21.690051°) 21.690333°) 21.690428°) 21.688693°)                                     |                        |                        |                        | 参考限值  |                      |  |  |  |
| 苯并[k]荧蒽                                 | 0.004L                                                                                                                                                                      | 0.004L                 | 0.004L 0.004L          |                        |       | μg/L                 |  |  |  |
| 苯并[a]芘                                  | 0.004L                                                                                                                                                                      | 0.004L                 | 0.004L                 | 0.004L                 | ≤0.01 | μg/L<br>μg/L<br>μg/L |  |  |  |
| 二苯并[a,h]蒽                               | 0.003L                                                                                                                                                                      | 0.003L                 | 0.003L                 | 0.003L                 |       |                      |  |  |  |
| 苯并(g, h, i)芘                            | 0.005L                                                                                                                                                                      | 0.005L                 | 0.005L                 | 0.005L                 |       |                      |  |  |  |
| 茚并[1,2,3-cd]芘                           | 0.005L                                                                                                                                                                      | 0.005L 0.005L          |                        | 0.005L                 |       | μg/L                 |  |  |  |
| 邻苯二甲酸二辛酯                                | 0.2L                                                                                                                                                                        | 0.2L                   | 0.2L                   | 0.2L                   |       | μg/L                 |  |  |  |
| 石油烃 (C <sub>10</sub> -C <sub>40</sub> ) | 0.36                                                                                                                                                                        | 0.22                   | 0.23                   | 0.01L                  |       | mg/L                 |  |  |  |
| 邻苯二甲酸丁基苄基酯*                             | 2.5×10 <sup>-4</sup> L                                                                                                                                                      | 2.5×10 <sup>-4</sup> L | 2.5×10 <sup>-4</sup> L | 2.5×10 <sup>-4</sup> L |       | mg/L                 |  |  |  |
| 邻苯二甲酸二(2-乙基己)<br>酯α                     | $^{\circ}$                                                                                                                                                                  |                        | 0.41L                  | 0.41L                  | ≤8.0  | μg/L                 |  |  |  |
| 备注                                      | <ul><li>1."L"表示检测结果低于方法检出限;"——"对应标准中无该项限值或不适用;</li><li>2.参考限值由客户提供,参考《地下水质量标准》(GB 14848-2017)Ⅲ类限值;</li><li>3."α"表示该项目为分包项目,分包至(资质编号: 202319122787)深圳市惠利权环境检测有限公司。</li></ul> |                        |                        |                        |       |                      |  |  |  |

# 6.2.2 地下水污染物检测结果分析

根据地下水检测结果可知,37 项特征污染物中10 项指标未检出,其他3 项上一年度超筛选值因子均有不同程度检出。地下水污染物检测结果统计见表6.2-2。

### 表 6.2-2 地下水污染物检测结果统计与评价表

| 序号 | 监测项目             | 样品数量 | 最小值      | 最大值      | 超筛选值数量(个) | 超筛选<br>值率<br>(%) |   | 样品检<br>出数量 | 样品检<br>出率<br>(%) | 标准限值     | 单位   |
|----|------------------|------|----------|----------|-----------|------------------|---|------------|------------------|----------|------|
| 1  | 砷                | 4    | 0.0003L  | 0.0003L  | 0         | 0                | / | 0          | 0                | ≤0.05    | mg/L |
| 2  | 汞                | 4    | 0.00004L | 0.00004L | 0         | 0                | / | 0          | 0                | ≤0.002   | mg/L |
| 3  | 铅                | 4    | 0.00009L | 0.00247  | 0         | 0                | / | 4          | 100              | ≤0.10    | mg/L |
| 4  | 镉                | 4    | 0.00005L | 0.00087  | 0         | 0                | / | 1          | 25.00            | ≤0.01    | mg/L |
| 5  | 铬                | 4    | 0.00011L | 0.00131  | 0         | 0                | / | 3          | 75.00            | 39.5*    | mg/L |
| 6  | 铜                | 4    | 0.00033  | 0.00257  | 0         | 0                | / | 4          | 100              | ≤1.50    | mg/L |
| 7  | 锌                | 4    | 0.00227  | 0.0229   | 0         | 0                | / | 4          | 100              | ≤0.15    | mg/L |
| 8  | 锰                | 4    | 0.00223  | 0.0530   | 0         | 0                | / | 4          | 100              | ≤1.50    | mg/L |
| 9  | 锡                | 4    | 0.00008L | 0.0305   | 0         | 0                | / | 2          | 50.00            | 15.8*    | mg/L |
| 10 | 镍                | 4    | 0.00006L | 0.00006L | 0         | 0                | / | 0          | 0                | ≤0.10    | mg/L |
| 11 | 锑                | 4    | 0.00014  | 0.00175  | 0         | 0                | / | 4          | 100              | ≤0.01    | mg/L |
| 12 | 可萃取性石油烃(C10-C40) | 4    | 0.01L    | 0.36     | 0         | 0                | / | 3          | 75.00            | 1.05*    | mg/L |
| 13 | 萘                | 4    | 0.012L   | 0.012L   | 0         | 0                | / | 0          | 0                | ≤600     | μg/L |
| 14 | 苊                | 4    | 0.005L   | 0.005L   | 0         | 0                | / | 0          | 0                | 1.58*    | mg/L |
| 15 | 芴                | 4    | 0.013L   | 0.013L   | 0         | 0                | / | 0          | 0                | 1.05*    | mg/L |
| 16 | 苊烯               | 4    | 0.008L   | 0.008L   | 0         | 0                | / | 0          | 0                | 1.58*    | mg/L |
| 17 | 菲                | 4    | 0.012L   | 0.012L   | 0         | 0                | / | 0          | 0                | 0.79*    | mg/L |
| 18 | 蒽                | 4    | 0.004L   | 0.004L   | 0         | 0                | / | 0          | 0                | ≤3600    | μg/L |
| 19 | 荧蒽               | 4    | 0.005L   | 0.005L   | 0         | 0                | / | 0          | 0                | ≤480     | μg/L |
| 20 | 芘                | 4    | 0.016L   | 0.016L   | 0         | 0                | / | 0          | 0                | 0.79*    | mg/L |
| 21 | 苯并(a)蒽           | 4    | 0.012L   | 0.012L   | 0         | 0                | / | 0          | 0                | 0.00161* | mg/L |
| 22 | 崫                | 4    | 0.005L   | 0.005L   | 0         | 0                | / | 0          | 0                | 0.161*   | mg/L |

| 序号 | 监测项目            | 样品数量 | 最小值                    | 最大值                    | 超筛选值数量(个) | 超筛选<br>值率<br>(%) |   | 样品检<br>出数量 | 样品检<br>出率<br>(%) | 标准限值      | 单位   |
|----|-----------------|------|------------------------|------------------------|-----------|------------------|---|------------|------------------|-----------|------|
| 23 | 苯并(b)荧蒽         | 4    | 0.004L                 | 0.004L                 | 0         | 0                | / | 0          | 0                | ≤8.0      | μg/L |
| 24 | 苯并(k)荧蒽         | 4    | 0.004L                 | 0.004L                 | 0         | 0                | / | 0          | 0                | 0.0161*   | mg/L |
| 25 | 苯并(a)芘          | 4    | 0.004L                 | 0.004L                 | 0         | 0                | / | 0          | 0                | ≤0.50     | μg/L |
| 26 | 二苯并(a,h)蒽       | 4    | 0.003L                 | 0.003L                 | 0         | 0                | / | 0          | 0                | 0.000161* | mg/L |
| 27 | 苯并(g,h,i) 菲     | 4    | 0.005L                 | 0.005L                 | 0         | 0                | / | 0          | 0                | 0.79*     | mg/L |
| 28 | 茚并(1,2,3-c,d)芘  | 4    | 0.005L                 | 0.005L                 | 0         | 0                | / | 0          | 0                | 0.00161*  | mg/L |
| 29 | 氟化物             | 4    | 0.26                   | 0.29                   | 0         | 0                | / | 4          | 100              | ≤1.0      | mg/L |
| 30 | 苯               | 4    | 1.4L                   | 1.4L                   | 0         | 0                | / | 0          | 0                | ≤10.0     | mg/L |
| 31 | 甲苯              | 4    | 1.4L                   | 1.4L                   | 0         | 0                | / | 0          | 0                | ≤700      | mg/L |
| 32 | 乙苯              | 4    | 0.8L                   | 0.8L                   | 0         | 0                | / | 0          | 0                | ≤300      | mg/L |
| 33 | 间,对-二甲苯         | 4    | 2.2L                   | 2.2L                   | 0         | 0                | / | 0          | 0                | ≤500      | mg/L |
| 33 | 邻二甲苯            | 4    | 1.4L                   | 1.4L                   | 0         | 0                | / | 0          | 0                | ≤500      | mg/L |
| 34 | 苯乙烯             | 4    | 0.6L                   | 0.6L                   | 0         | 0                | / | 0          | 0                | ≤20.0     | mg/L |
| 35 | 邻苯二甲酸二正辛酯       | 4    | 0.2L                   | 0.2L                   | 0         | 0                | / | 0          | 0                | 0.263*    | mg/L |
| 36 | 邻苯二甲酸二(2-乙基己基)酯 | 4    | 0.41L                  | 0.41L                  | 0         | 0                | / | 0          | 0                | ≤8.0      | mg/L |
| 37 | 邻苯二甲酸丁基苄基酯      | 4    | 2.5×10 <sup>-4</sup> L | 2.5×10 <sup>-4</sup> L | 0         | 0                | / | 0          | 0                | 0.0848*   | mg/L |
| 38 | 氨氮              | 4    | 0.129                  | 0.185                  | 0         | 0                | / | 4          | 100              | ≤0.50     | mg/L |
| 39 | 耗氧量             | 4    | 1.97                   | 2.30                   | 0         | 0                | / | 4          | 100              | ≤3.0      | mg/L |

**备注: 1、**"L"表示检测结果低于方法检出限。2、"\*"表示根据《建设用地土壤污染风险评估技术导则》(HJ 25.3-2019)推导出来的值。

37 项特征污染物中 27 项指标未检出,其他 10 项均有不同程度检出,铅的检出浓度在 0.00009L~0.00247mg/L 范围内、镉的检出浓度在 0.00011L~0.00131mg/L 范围内、总铬的检出浓度在 0.00011L~0.00131mg/L 范围内、铜的检出浓度在 0.00033~0.00257mg/L 范围内、锌的检出浓度在 0.00227~0.0229mg/L 范围内、锰的检出浓度在 0.00223~0.0530mg/L 范围内、锡的检出浓度在 0.00008L~0.0305mg/L 范围内、锑的检出浓度在 0.00014~0.00175mg/L 范围内、可萃取性石油烃(C10-C40)的检出浓度在 0.01L~0.36mg/L 范围内、氟化物的检出浓度在 0.26~0.29mg/L 范围内,各项特征 污染物检测指标的检出浓度均符合《地下水质量标准》(GB/T14848-2017)中的 III 类标准和风险筛选值要求。

上年度 3 项超筛选值指标(锰、氨氮、耗氧量)中,锰的检出浓度在 0.00223~0.0530mg/L 范围内、氨氮的检出浓度在 0.129~0.185mg/L 范围内、耗氧量的检出浓度在 1.97~2.30mg/L 范围内,锰、氨氮、耗氧量均未超出《地下水质量标准》(GB/T14848-2017)中的 III 类标准要求。

#### 6.3 土壤和地下水自行监测结果小结

- (1) 通过对 2023 年 12 月采集的土壤样品的监测结果分析可知:
- 6个土壤样品中,各点位样品所检测指标的各项检测结果均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中的第二类用地的风险筛选值。
  - (2) 通过对 2023 年 12 月采集的地下水样品的监测结果分析可知:
- 4 个点位的地下水样品中,各点位样品所检测指标的各项检测结果均符合《地下水质量标准》(GB/T14848-2017)中的 III 类标准和风险筛选值要求。

#### 7、结论与建议措施

#### 7.1 监测结论

- (1)土壤样品中: 6个样品所检测指标的各项检测结果均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中的第二类用地的风险筛选值。
- (2) 地下水样品中: 4个样品所检测指标的各项检测结果均低于《地下水质量标准》(GB/T14848-2017)中的 III 类标准和风险筛选值要求。

#### 7.2 企业针对监测结果拟采取的主要措施建议

#### 7.2.1 拟采取的措施

- (1) 严禁开发企业及周边地下水作为饮用用途,防止因为饮用该区域地下水造成暴露途径带来的健康风险。
- (2)根据现场排查可知,企业总体较为规范,各个重点监管单元均有做好相关的防腐防渗措施。但在日常生产过程中,应加强管理,定期对于重点监管单元进行巡检,一旦发现重点监管单元存在土壤污染风险,如地面开裂、管道滴漏等,应立刻采取环境应急措施,防止原辅料等对于土壤造成污染。同时,应及时对相关设施进行维修或者维护。
- (3)现阶段,企业内建设 4 个地下水监测井,企业在日常运行过程中,应注意维护相关监测井。①不可对监测井进行破坏;②在日常生产过程中监测井应保持常闭,不可擅自打开,避免对地下水产生污染。

#### 7.2.2 后续管理要求

- (1) 企业应当按照相关技术规范要求,自行或者委托第三方定期开展土壤和地下水监测,重点监测存在污染隐患的区域和设施,以及周边的土壤、地下水,并按照规定公开相关信息。企业应当对监测数据及信息公开内容的真实性和准确性负责。
  - (2) 企业应配合生态环境主管部门的监督与检查,做好土壤和地下水自行

监测和土壤污染隐患排查台账记录, 并长期保存。

(3) 土壤和地下水监测指标和频次需按照自行监测方案进行执行。

基本因子: 土壤监测的基本因子为《土壤环境质量 建设用地土壤污染风险管控标(试行)》(GB 36600-2018)表 1 中的 45 项基本项目; 地下水监测的基本因子为《地下水质量标准》(GB/T 14848)表 1 中感官性状及一般化学指标和毒理学指标共 35 项常规指标。基本因子每 3 年监测一次。

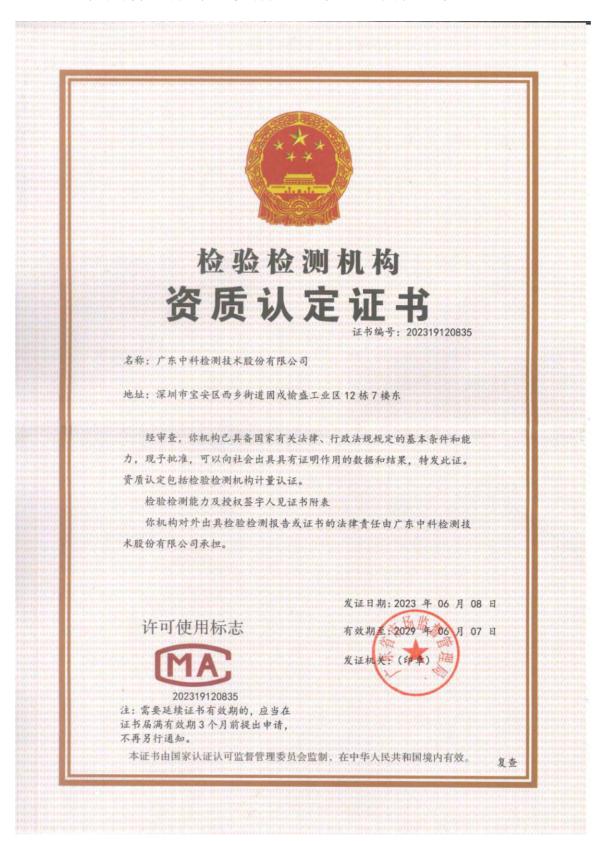
企业特征因子:铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯乙烯)、多环芳烃 16 种(苯并(a)蒽、苯并(a)芘、苯并(b) 荧蒽、苯并(k)荧蒽、菌、二苯并(a,h)蒽、茚并(1,2,3-c,d)芘、萘、芘、芴、苊、苊烯、苯并[g,h,i]芘、荧蒽、菲、蒽)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、石油烃(C10-C40)、氟化物。

超筛选值指标:若出现超筛选值指标,应在下一阶段的自行监测中把超筛选值指标纳入其中,并加密监测频次。同时加强对超筛选值区域的隐患排查和跟踪监测。本年度土壤和地下水均无超筛选值指标。

建议下一阶段土壤和地下水自行监测频率可参考表 7.2-1。

监测 监测对象 点位名称 监测指标 频率 企业特征污染物(铜、铅、汞、镉、镍、砷、铬、锑、 锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯 乙烯)、多环芳烃 16 种(苯并(a)蒽、苯并(a)芘、苯并(b) 表层 T1, T2, T3, 1年1 T4, T5, T6 花、萘、芘、芴、苊、苊烯、苯并[g,h,i]芤、荧蒽、菲、 土壤 次 蔥)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、 邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、石 油烃(C10-C40)、氟化物) 土 壤 pH+45 项基本项目+企业特征污染物(铜、铅、汞、镉、 镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、 乙苯、二甲苯、苯乙烯)、多环芳烃 16 种(苯并(a)蒽、 深层 3年1 S1, S2 蔥、茚并(1,2,3-c,d)芘、萘、芘、芴、苊、苊烯、苯并[g,h,i] 土壤 次 花、荧蒽、菲、蒽)、邻苯二甲酸酯类(邻苯二甲酸 二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲 酸二正辛酯)、石油烃(C10-C40)、氟化物)

表 7.2-1 下一阶段土壤和地下水自行监测频率一览表


| 监测对象 | 点位名称                | 监测指标                                                                                                                                                                                                                  | 监测<br>频率 |
|------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | 二类单元 W1<br>和对照点 BJ1 | 企业特征污染物(铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯乙烯)、多环芳烃 16 种(苯并(a)蒽、苯并(a)芘、苯并(b) 荧蒽、苯并(k)荧蒽、菌、二苯并(a,h)蒽、茚并(1,2,3-c,d) 芘、萘、芘、芴、苊、苊烯、苯并[g,h,i]菲、荧蒽、菲、蒽)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、石油烃(C10-C40)、氟化物) | 1年1      |
| 地下水  | 一类单元 W2、<br>W3      | 企业特征污染物(铜、铅、汞、镉、镍、砷、铬、锑、锰、锌、锡、苯系物(苯、甲苯、乙苯、二甲苯、苯乙烯)、多环芳烃 16 种(苯并(a)蒽、苯并(a)芘、苯并(b) 荧蒽、苯并(k)荧蒽、菌、二苯并(a,h)蒽、茚并(1,2,3-c,d) 芘、萘、芘、芴、苊、苊烯、苯并[g,h,i]菲、荧蒽、菲、蒽)、邻苯二甲酸酯类(邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯)、石油烃(C10-C40)、氟化物) | 1年2次     |

注: 地下水可选取每年中相对固定的时间段采样。

#### 8、附件

#### 8.1 实验室资质证书

(1) 广东中科检测技术股份有限公司实验室资质证书



#### (2) 分包单位深圳市惠利权环境检测有限公司实验室资质证书



# 检验检测机构资质认定证书

证书编号: 202319122787

名称:深圳市惠利权环境检测有限公司

地址:深圳市宝安区沙井街道后亭社区第三工业区 45号 4层

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现予批准, 可以向社会出具具有证明作用的数据和结果, 特发此证。 资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表

你机构对外出具检验检测报告或证书的法律责任由深圳市惠利权环 境检测有限公司承担。

许可使用标志



202319122787 注:需要延续证书有效期的,应当在 证书届满有效期3个月前提出申请, 不再另行通知。

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。

发证日期: 2023 年 09 月 07 日

有效期至: 2029 年 03 月 05 日 发证机关: (印章)

# 8.2 重点监测单元清单

| 编号 | 重点单元<br>名称         | 面积 (m²) | 疑似污染区域                              | 关注特征污染物                                                             | 识别原因                                                                                                      | 划定依据                                                                                         |
|----|--------------------|---------|-------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1  | 原料暂存<br>与废水处<br>理区 | 3400    | 废水处理区、原<br>料暂存区域                    | 铜、铅、汞、镉、镍、砷、铬、<br>锑、锰、锌、锡、苯系物、多环<br>芳烃、邻苯二甲酸酯类、石油烃<br>(C10-C40)、氟化物 | 废水在储存及处理过程中可能因池体<br>开裂、渗漏等情况带来污染风险,同时,原料暂存过程中可能存在物料扬<br>撒等情况污染土壤的可能性。                                     | 该重点监测单元均为连片硬化地面,主<br>要用于废旧家电和报废机动车暂存,在<br>硬化地面西北角区域废水处理区,属于<br>其地下水下游方向,因此将其划分为一<br>个重点监测单元。 |
| 2  | 生产区                | 17000   | 报废机动<br>车拆解车<br>间区、废<br>旧家电拆<br>解车间 | 铜、铅、汞、镉、镍、砷、铬、<br>锑、锰、锌、锡、苯系物、多环<br>芳烃、邻苯二甲酸酯类、石油烃<br>(C10-C40)、氟化物 | 机动车拆解过程中产生的机油、汽油、<br>润滑油、变速箱油等废矿物油可能存<br>在滴漏或是渗漏污染风险。同时废旧<br>电在拆解过程中,可能存在固废或者<br>危废扬撒、滴漏等可能,造成周边土<br>壤污染。 | 该重点监测单元均为企业的核心区域,<br>均属于拆解生产线,也均属于棚内作<br>业,因此将其划分为一个重点监测单<br>元。                              |
| 3  | 物料仓库<br>与危废暂<br>存区 | 11600   | 危废贮存区、物<br>料仓库                      | 铜、铅、汞、镉、镍、砷、铬、<br>锑、锰、锌、锡、苯系物、多环<br>芳烃、邻苯二甲酸酯类、石油烃<br>(C10-C40)、氟化物 | 拆解后的物料以及危险废物在长期储<br>存过程中可能存在的跑冒滴漏或泄漏<br>带来污染风险。                                                           | 该重点监测单元均为拆解后产物的暂存区,包括一般物料和危废,用途接近<br>且为连片建筑,因此将其划分为一个重<br>点监测单元。                             |

# 8.3 采样、洗井相关内容

# 8.3.1 地下水采样前洗井记录

broas

GDZK-JS.2-077-4

# 监测井洗井记录表

| 深祥日期;202] (122)   監測井橋和是否完整                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.基本信息          |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----------|--------|-------------|---------------|-----------------------------------------|----------------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 大学   大学   大学   大学   大学   大学   大学   大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 采样日期: 202       | 1.12.28    |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 2   2   2   2   3   3   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 监测井编号           |            | W        | 1      |             | 监测井           | <b></b>  锁扣是                            | 是否完整           |             | ☑ 是        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 2   2   2   2   3   3   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 天气状况            |            | 918      |        |             | 48 小          | 时内是                                     | 否强降            | 雨           | □是         | □ 否                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 洗井没                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 采样点地面是          | 否积水:       |          | 是      | P           | 否             |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.洗井资料          |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 洗井设备/方式         | t          | 23       | 幼管     |             | 水位面           | <b>「至井口</b>                             | ]高度(           | m)          | t.         | 8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| # 注答 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 井水深度 (m)        |            | 3        | .64    |             | 地下水           | 〈水位                                     | (m)            |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 現场測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 井径 (m)          |            |          |        |             | 井水体           | k积(L                                    | )              |             | 9.         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| □ 値校正: 1 校正标准流: ( , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 洗井开始时间          |            | - 1      | 1:16   |             | 洗井绢           | 吉東时间                                    | ij             |             | 12:        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 2 校正标准能: ( ) ? ? . 校正时温度 ( ( ) ? ? . 欠 还值: 6 ) ? ( ) 公惠型号/编号:□A2-8603 STT-XC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.现场测定          |            |          | -      |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 2 校正标准能: ( ) ? ? . 校正时温度 ( ( ) ? ? . 欠 还值: 6 ) ? ( ) 公惠型号/编号:□A2-8603 STT-XC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH 值校正:         | 1 校正标准》    | 後: 4.00  | , 校正时  | 温度 16       | .8 .          | C ,校正                                   | [值:4.0]        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 世号率校正: 1 校正标准流                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 2 校正标准剂    | 友: 6. 27 | 校正时温   | 温度 //       | 7 .           | C, 校正                                   | E值: 6.2        | )           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 电导率校正能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 仪器型号/编号:        | □AZ-8603   | STT-XC   |        | BANTE       | 903P ST       | T-XCO.K                                 | 66             | □其他:        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 位器型号/編号:□AZ-8603 SIT-XC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 溶解氧仪校正:満点校正读数 9. 7 (平m) 校正时温度 16.7 ℃、校正时气压 12.2 下                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 仮器型号/編号: □AZ-8603 STT-XC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |            |          |        |             |               |                                         |                |             | 溶解氧校       | 正值:9.70 mv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |          |        |             |               |                                         |                |             |            | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 強度校正: 校正标准液                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |            |          |        |             |               |                                         | -              |             | mV         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 強度校正: 校正标准液                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 仪器型号/编号:        | △BANTE 90  | 3P STT-X | 00 544 |             | 其他:           | 111111111111111111111111111111111111111 |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |          |        |             | 直:            | 88.7                                    |                | NTU         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 仪器型号/编号:        | Ø WGZ-200B | STT-XGO  | 768    |             | 其他:           |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 財自                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 財自                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |          |        |             |               |                                         |                |             | 気ル         | James were all these to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 財自                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 洗井汲        | 水面距      | 洗井出    | 温度          | 油度            |                                         | 电导率(           | 溶解氧         | 还 原        | 洗井水性》                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5        |
| 洗井前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 时间              |            |          |        |             | (NIU)         | pH 值                                    | μS/cm          | (mg/L)      | 电 位        | ()须巴、 ()9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d        |
| 第一次洗井                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | (L/min)    | (m)      | (L)    |             |               |                                         | ,              |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 第一次洗井                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 洗井前             | /          | 4.81     | /      | 20.7        | 42.9          | 7.11                                    | 187.9          | 4.8         | 42.2       | それも                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201.1228 |
| 第三次洗井 よ、8~1/. 0 20.3 /89.2 7,07 /86.9 年、7 2/1.4 年、充、込、第四次洗井 第 次洗井 洗井后 よ、り、20.5 /89.2 7,05 /87.4 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5 年.6 2/10.5    | 第一次洗井           | /          | 4.84     | 11.0   |             |               |                                         |                |             | 210.7      | 重龙无. 这                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 是智/      |
| 第四次洗井 第 次洗井 洗井后  上、上 / 20.上 / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / 20.L / | 第二次洗井           | /-         |          | 11.0   | 20.2        | 180.1         | 7.10                                    | 187.2          | 4.7         | 2/1. 8     | 女.无.池                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 第 次洗井 洗井后  注、尺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 第三次洗井           |            | 4.88     | 11.0   | 20.3        | 188.2         | 7.07                                    | 186.9          | 4.7         | 211.4      | 灰、无、饱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 洗井店    上、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 第四次洗井           |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 洗井结束时水位面至井口高度(m)  采样前洗井要求如下: (1) 采样前洗井应至少在成井洗井48h后开始。(2) 采样前洗井应避免对井内水体产生气提、气曝等扰动。若选用气囊泵或低流量潜水泵,泵体进水口应置于水面下1.0m左右,抽水速率应不大于0.3L/min,洗井过程应测定地下水位,确保水位下降小于10cm。若洗井过程中水位下降超过10cm,则需要适当调低气囊泵或低流量潜水泵的洗井流速。若采用贝勒管进行洗井,贝勒管汲水位置为井管底部,应控制贝勒管缓慢下降和上升,原则上洗 井水体积应达到3~5倍滞水体积。(3)连续三次采样达到以下灾寒结束洗井; a) 时变化范围为±0.1; b) 温度变化范围为±0.5℃; c)电导率变化范围为±3%; d) D0变化范围为±10%。当00<2 0mg/l即,其变化范围为±0.2 cmg/l。(3) 连续三次平线达到以下,定处定位下分位,连续多次洗井后的浊度≥50NTU时,其变化范围为±1.0NTU,并含水层处于粉土或粘土地层时,连续多次洗井后的浊度≥50NTU时,要求连续三次测量浊度变化值小于5NTU。若含水层处于粉土或粘土地层时,连续多次洗井后的浊度≥50NTU时,要求连续三次测量浊度变化值小于5NTU。若现场测试参数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3~5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 第 次洗井           |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 洗开水 总体积(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 洗井后             | /          | £.85     | /      | 30.7        | 180.5         | 7.05                                    | 187.4          | 4.6         | 2/0.5      | 灰.无.识                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 采样前洗井要求如下: (1) 采样前洗井应至少在成井洗井48h后开始。(2) 采样前洗井应避免对井内水体产生气提、气曝等扰动。若选用气囊聚或低流量潜水泵,泵体进水口应置于水面下1.0m左右,抽水速率应不大于0.3L/min,洗井过程应测定地下水位,确保水位下降小于10cm。若洗井过程中水位下降超过10cm。则需要适当调低气囊聚或低流量 潜水泵的洗井流速。若采用贝勒管进行洗井,贝勒管汲水位置为井管底部。应控制贝勒管缓慢下降和上升,原则上洗井水体积应达到3°5倍滞水体积。(3) 连续三次采样达到以下要求结束洗井: a) 时变化范围为±0.1; b) 温度变化范围为±0.5℃; c)电导率变化范围为±3%; d) D0变化范围为±1.0%; 由200<2 0mg/L时,其变化范围为±0.2mg/L; e) 0RP变化范围为1.0NTU; 者含水层处于粉土或粘土,地层时,连续多次洗井后的浊度≥50NTU时,其变化范围为±1.0NTU,其变化范围为±1.0NTU; 若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50NTU时,要求连续三次测量浊度变化值小于5NTU。若我尽测试少数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3°5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>姓世业台</b> 44年 | 1 (1)      |          | 77 2   |             | 洗井绢           | 吉東时才                                    | x位面至           | 井口          |            | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 水体产生气提、气曝等扰动。若选用气囊泵或低流量潜水泵、泵体进水口应置于水面下1.0m左右,抽水速率应不大于0.31/min,洗 井过程应测定地下水位 ,确保水位下降小于10cm。若洗井过程中水位下降超过10cm,则需要适当调低气囊泵或低流量 潜水泵的洗井流速。若采用贝勒管进行洗井,贝勒管汲水位置为井管底部,应控制贝勒管缓慢下降和上升,原则上洗 井水体积应达到3°5倍滞水体积。 (3) 连续三次采样达到以下要求结束洗井: a) pH变化范围为±0.1; b) 温度变化范围为±0.5℃; c) 电导率变化范 围为±3%; d) D0变化范围为±10%; 当D0<2 0mg/L时,其变化范围为±0.2mg/1; e) 0RP 变化范围±10m/; f) 10NTU <浊度<50NTU时,其变化范围应在±10%以内; 浊度<10NTU时,其变化范围为±1.0NTU; 若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50NTU时,要求连续三次测量浊度变化值小于5NTU。若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50NTU时,要求连续三次测量浊度变化值小于5NTU。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 九开 小心 体心        | (L)        |          | 55.0   |             | 高度            | (m)                                     |                |             | ځ          | . 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 水体产生气提、气曝等扰动。若选用气囊泵或低流量潜水泵、泵体进水口应置于水面下1.0m左右,抽水速率应不大于0.31/min,洗 井过程应测定地下水位 ,确保水位下降小于10cm。若洗井过程中水位下降超过10cm,则需要适当调低气囊泵或低流量 潜水泵的洗井流速。若采用贝勒管进行洗井,贝勒管汲水位置为井管底部,应控制贝勒管缓慢下降和上升,原则上洗 井水体积应达到3°5倍滞水体积。 (3) 连续三次采样达到以下要求结束洗井: a) pH变化范围为±0.1; b) 温度变化范围为±0.5℃; c) 电导率变化范 围为±3%; d) D0变化范围为±10%。当D0<2 0mg/L时,其变化范围为±0.2mg/1; e) 0RP 变化范围为±1.0MV; f) 10MTU <浊度<50MTU时,其变化范围应在±10%以内; 浊度<10MTU时,其变化范围为±1.0MTU; 若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50MTU时,要求连续三次测量浊度变化值小于5MTU。若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50MTU时,要求连续三次测量浊度变化值小于5MTU。若现场测试参数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3°5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 采样前洗井      | 要求如下:    | (1) 采  | 样前洗井        | 应至少在          | 成井洗井                                    | 48h后开始         | 。 (2) ¬Я    | ·<br>《样前洗井 | 应避免对井内                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 洗井要求 降超过10cm,则需要适当调低气囊泵或低流量 潜水泵的洗井流速。若采用贝勒管进行洗井,贝勒管汲水位置为井管底部,应控制贝勒管缓慢下降和上升,原则上洗 井水体积应达到3~5倍滞水体积。 (3) 连续三次采样达到以下要求结束洗井; a) 对变化范围为±0.1; b) 温度变化范围为±0.5℃; c) 电导率变化范 围为±3%; d) D0变化范围为±10%。当00<2 0mg/L时,其变化范围为±0.2mg/L; e) 06P 变化范围±10mV; f) 10MTU <浊度<50MTU时,其变化范围应在±10%以内; 浊度<10MTU时,其变化范围为±1.0MTU时,其变化范围为±1.0MTU时,其变化范围的上生。250MTU时,其变化范围为生1.0MTU,若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50MTU时,要求连续三次测量浊度变化值小于5MTU。 若现场测试参数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3~5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 水体产生气      | 提、气曝等    | 穿扰动。若  | 选用气象        | <b>医</b> 泵或低泡 | <b></b> 危量潜水                            | 泵,泵体;          | 进水口应置       | 于水面下1      | . Om左右, 抽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| (3) 连续三次采样达到以下要求结束洗井: a) 时变化范围为±0.1; b) 温度变化范围为±0.5°C; c) 电导率变化范 围为±3%; d) D0变化范围为±10%。当D0<2 0mg/L时, 其变化范围为±0.2mg/L; e) 0kP 变化范围为±1.0kV; f) 10kTU <浊度<50kTU时, 其变化范围应在±10k以内; 浊度<10kTU时,其变化范围为±1.0kTU; 若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50kTU时,要求连续三次测量浊度变化值小于5kTU。<br>若现场测试参数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3~5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 洗井要求            | 降超过10cm    | ,则需要适    | 当调低气   | <b>囊泵或低</b> | 流量 潜力         | k泵的洗:                                   | 井流速。老          | 5采用贝勒       | 管进行洗井      | <b>上</b> , 贝勒管汲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 电导率变化范 围为±3%; d) DO变化范围为±10%, 当DO<2 0mg/L时, 其变化范围为±0.2mg/L; e) 0RP 变化范围±10m%; f) 10MTU <浊度<50MTU时, 其变化范围应在±10%以内; 浊度< 10MTU时, 其变化范围为±1.0MTU; 若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50MTU时,要求连续三次测量浊度变化值小于5MTU。<br>若现场测试参数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3~5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 范围为±1.0NTU; 若含水层处于粉土或粘土 地层时,连续多次洗井后的浊度≥50NTU时,要求连续三次测量浊度变化值小于5NTU。<br>若现场测试参数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3~5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 电导率变化剂     | 国为±3%    | d) D   | 0变化范围       | 为土10%         | 当DO<2                                   | Omg/LBt,       | 其变化范围       | 围为±0.2mg   | g/L; e) ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 若现场测试参数无法满足(3)中的要求,或不具备现场测试仪器的,则洗井水体积达到3~5倍采样井内水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |          |        |             |               |                                         |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |          |        | 的要少         | 武不且久          | . 10 场侧岩                                | 心里的            | 明洗井水は       | 和认到这个      | (倍平样共中水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |          |        | 11734701    | -A 1 75 W     | - ALFORDING W                           | VIV. 111/11/17 | ATTUCKT AND | TAKE BUS C | THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE |          |

采样人: 王宪 洪世海 校核人: 王宪 审核人: 走加切 第1页共页

# 监测井洗井记录表

| 1.基本信息              | 7 /                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                               |                                                               |                  |
|---------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|
| 采样日期: >>2           | 5.12.21                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      | 111-300 L L                                                                              | L tale 1 - P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a man a state                                                                |                                                                               |                                                                               |                                                               | -                |
| 监测井编号               |                                                                                        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 是否完整                                                                         |                                                                               | □ 是                                                                           |                                                               | 否                |
| 天气状况                | unit des 1                                                                             | - f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 馬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                          | 时内是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 否强降                                                                          | 羽                                                                             | 口是                                                                            | Z                                                             | 否                |
| 采样点地面是              | 否积水:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      | 否                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                               |                                                               |                  |
| 2.洗井资料              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               | 1.54                                                                          | ,                                                             |                  |
| 洗井设备/方式             |                                                                                        | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 新营                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 口高度(                                                                         | m)                                                                            | 4.7                                                                           |                                                               |                  |
| 井水深度 (m)            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                          | 〈水位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                               | 4.7                                                                           |                                                               |                  |
| 井径 (m)              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                          | k积(L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |                                                                               | 8-7                                                                           |                                                               |                  |
| 洗井开始时间              |                                                                                        | - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | 洗井结                                                                                      | 吉東时间                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i]                                                                           |                                                                               | 13:5                                                                          | 38                                                            |                  |
| 3.现场测定              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                               |                                                               |                  |
| pH 值校正:<br>仪器型号/编号: | 2 校正标准》                                                                                | 友: 6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 校正时温                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 度 16.                                                                | Z.                                                                                       | C, 校I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E值: 6.8                                                                      | /                                                                             |                                                                               |                                                               |                  |
| 电导率校正:              | 1 校正标准》                                                                                | n. /100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 11 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /cm 由                                                                | 皇家校正                                                                                     | 值. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7                                                                          | u S/cm                                                                        |                                                                               |                                                               |                  |
| 仪器型号/编号:            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μ.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                               |                                                               |                  |
| 溶解氧仪校正:             |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               | 溶解氧核                                                                          | 正信・0 7                                                        | o mv             |
| 仪器型号/编号:            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               | HIAT PUL                                                                      | m.m.)-/                                                       | U                |
| 氧化还原电位校             | 正. 校正                                                                                  | 長准海 と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mV 4                                                                 | 対ル (不順)                                                                                  | 由价值的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 正值, 17                                                                       | 2).                                                                           | mV                                                                            |                                                               |                  |
| 仪器型号/编号:            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          | 也以且仅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ш.н.                                                                         |                                                                               | m.v                                                                           |                                                               |                  |
| 浊度校正:               |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          | 88.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | NTU                                                                           |                                                                               |                                                               |                  |
| 仪器型号/编号:            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          | ,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | NIO                                                                           |                                                                               |                                                               |                  |
| 4.洗井过程记录            |                                                                                        | 311 AC V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Шэ                                                                   | PETE:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                               |                                                               |                  |
| 7.00万是住记录           |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                               |                                                               |                  |
| 时间                  | 洗井汲<br>水速率<br>(L/min)                                                                  | 水面距<br>井口高度<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 洗井出<br>水体积<br>(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 温度 (℃)                                                               | 浊度<br>(NTU)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 电导率(<br>µS/cm<br>)                                                           | 溶解氧<br>(mg/L)                                                                 | 氧化<br>还原<br>也(mV)                                                             | 洗井才<br>(颜色、<br>, 杂                                            | k性状<br>气味<br>除质) |
| 洗井前                 | l l                                                                                    | 4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.9                                                                 | 41.1                                                                                     | 7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200.3                                                                        | 1,0                                                                           | 207.2                                                                         | £. E                                                          | . E              |
| 第一次洗井               | /                                                                                      | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.5                                                                 | 189.8                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 202.1                                                                        |                                                                               | 201.8                                                                         | 为元                                                            | in               |
| 第二次洗井               |                                                                                        | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201.7                                                                        | 4.8                                                                           | 204.3                                                                         |                                                               | 、让               |
| 第三次洗井               |                                                                                        | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | 184.6                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201,0                                                                        |                                                                               | 206.8                                                                         | 带. 看                                                          | 决                |
| 第四次洗井               |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                            |                                                                               |                                                                               | *                                                             | 1                |
| 第 次洗井               |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                               |                                                                               |                                                               |                  |
| 洗井后                 |                                                                                        | 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.6                                                                 | 186.8                                                                                    | 7.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202.4                                                                        | 4.8                                                                           | 206.3                                                                         | 意.元                                                           | 说                |
| 洗井水总体积              | (L)                                                                                    | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | 洗井纠<br>高度                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×位面至                                                                         | 井口                                                                            | 4                                                                             | .81                                                           |                  |
| 洗井要求                | 采水水连超位。<br>来水水连超位。<br>中变花园土1.0<br>中变花园土1.0<br>中变花园量现积<br>是中花园量现积<br>是中花园量现积<br>是中花园量现积 | 提大,63L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(10.3L/m<br>(1 | 等扰动。 若<br>nin, 洗 并<br>当调贝斯(<br>的以下要求<br>10NTU <<br>10NTU <<br>10NTU —<br>10NTU | 一选用气弧<br>过程或低。<br>过程或慢下。<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 變聚或低低<br>原定地 潜力<br>原量 上升<br>解和上升<br>以下力<br>以下力<br>以下力<br>以下力<br>以下力<br>以下力<br>以下力<br>以下力 | 充量<br>大人<br>大人<br>大人<br>不<br>所<br>大人<br>不<br>原<br>化<br>不<br>原<br>化<br>不<br>原<br>の<br>則<br>花<br>で<br>の<br>り<br>の<br>し<br>の<br>し<br>で<br>も<br>の<br>し<br>で<br>も<br>の<br>し<br>で<br>も<br>で<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>で<br>も<br>の<br>に<br>も<br>で<br>も<br>の<br>に<br>も<br>で<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>が<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>も<br>の<br>に<br>の<br>に<br>る<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>。<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>。<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>。<br>に<br>る<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。 | 泵,泵体运<br>保水位下<br>排洗速。<br>差<br>洗井水体<br>为±0.1;<br>2 Omg/l时,<br>国应在±10<br>多次洗井, | 世水口应置降小于10cm<br>降小于10cm<br>等采用贝勒<br>积应达到3<br>b) 温度3<br>其变化范围<br>%以内;<br>后的浊度≥ | 于水面下1<br>n。若洗井;<br>管进行洗井<br>5倍滞水体<br>变化范围为:<br>围为±0.2mg<br>速度< 10M<br>50NTU时, | 1.0m左右,<br>过程中水量<br>中,积。<br>生0.5°C;<br>g/L; ,<br>度/L; ,<br>连续 | 抽下汲 ORP          |
| 采样人: 工事             | 最 骐                                                                                    | <b></b> 边海                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 校                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 核人:                                                                  | 王震                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 审核人:                                                                         | 表的                                                                            | 饲 第                                                                           | 河共                                                            | (页               |

# 监测井洗井记录表

| 1.基本信息                                                |                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                           |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 采样日期: 2023,12.29                                      |                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                           |
| 监测井编号                                                 | w?                                                                                                                                                                        | 监测井锁扣是否完整                                                                                                                                                                                                                | □ 是 □ 否                                                                                                                                   |
| 天气状况                                                  | OLL                                                                                                                                                                       | 48 小时内是否强降雨                                                                                                                                                                                                              | 口是口否                                                                                                                                      |
| 采样点地面是否积水:                                            | 口是区                                                                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                           |
| 2.洗井资料                                                |                                                                                                                                                                           | -                                                                                                                                                                                                                        |                                                                                                                                           |
| 洗井设备/方式                                               | 尺勤管                                                                                                                                                                       | 水位面至井口高度 (m)                                                                                                                                                                                                             | 7.56                                                                                                                                      |
| 井水深度 (m)                                              | 7.12                                                                                                                                                                      | 地下水水位 (m)                                                                                                                                                                                                                |                                                                                                                                           |
| 井径 (m)                                                | 0.057                                                                                                                                                                     | 井水体积 (L)                                                                                                                                                                                                                 | 7. <u>46</u><br>7.0                                                                                                                       |
| 洗井开始时间                                                | 14:22                                                                                                                                                                     | 洗井结束时间                                                                                                                                                                                                                   | 15:35                                                                                                                                     |
| 3.现场测定                                                |                                                                                                                                                                           |                                                                                                                                                                                                                          | /-                                                                                                                                        |
| pH 值校正: 1 校正标准剂                                       | ğ. <b>ψ.9○</b> ,校正时温度                                                                                                                                                     | 16.8 ℃,校正值:4.0/                                                                                                                                                                                                          |                                                                                                                                           |
| 2 校正标准剂                                               | 夜:6-10 ,校正时温度                                                                                                                                                             | /6.8 ℃, 校正值:6.8                                                                                                                                                                                                          |                                                                                                                                           |
| 仪器型号/编号:□AZ-8603                                      | STT-XC ZBA                                                                                                                                                                | NTE 903P STT-XCOンVC □其他                                                                                                                                                                                                  | l:                                                                                                                                        |
| 电导率校正: 1 校正标准》                                        | 夜: 10つ μS/cm                                                                                                                                                              | 电导率校正值: / Ø Φ · ζ μ S/cm                                                                                                                                                                                                 |                                                                                                                                           |
| 仪器型号/编号:□AZ-8603                                      |                                                                                                                                                                           | BANTE 903P STT-XCo上6 □其他:                                                                                                                                                                                                |                                                                                                                                           |
| 溶解氧仪校正: 满点校正读数                                        | 收 8-74 mv,校正时温度,                                                                                                                                                          | 16-8 ℃,校正时气压 /ol. ン KPa                                                                                                                                                                                                  | ;溶解氧校正值: ₹. 70 mv                                                                                                                         |
| 仪器型号/编号:□AZ-8603                                      | STT-XC &                                                                                                                                                                  | BANTE 903P STT-XCOより □其他:                                                                                                                                                                                                |                                                                                                                                           |
| 氧化还原电位校正: 校正                                          | 标准液 レム mv                                                                                                                                                                 | 7, 氧化还原电位值校正值: ひとと<br>□其他:                                                                                                                                                                                               | mV                                                                                                                                        |
| 仪器型号/编号: ☑BANTE 90                                    | 3P STT-XCOLYT                                                                                                                                                             | □其他:                                                                                                                                                                                                                     |                                                                                                                                           |
| 浊度校正: 校正标准液                                           |                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                           |
| 仪器型号/编号:☑ WGZ-200B                                    | STT-XC0768                                                                                                                                                                | □其他:                                                                                                                                                                                                                     |                                                                                                                                           |
| 4.洗井过程记录                                              |                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                           |
| 洗井汲水速率<br>(L/min)                                     |                                                                                                                                                                           | 度 浊度<br>C) (NIU) pH 值 电导率(溶解氧 (mg/L)                                                                                                                                                                                     |                                                                                                                                           |
| 洗井前 /                                                 | 7.46 / 4                                                                                                                                                                  | 1.1 157.47.18 221.4 4.7                                                                                                                                                                                                  | 00 2 11111                                                                                                                                |
| 第一次洗井                                                 |                                                                                                                                                                           | 6181.67.262187 4.8                                                                                                                                                                                                       |                                                                                                                                           |
| 第二次洗井 /                                               |                                                                                                                                                                           | 1.8 178.47.22 218.2 4.6                                                                                                                                                                                                  | 11/0-12                                                                                                                                   |
| 第三次洗井 %.0                                             | 0 9                                                                                                                                                                       | 71111                                                                                                                                                                                                                    | 6                                                                                                                                         |
| 第四次洗井                                                 |                                                                                                                                                                           |                                                                                                                                                                                                                          | 7, 1,0                                                                                                                                    |
| 第 次洗井                                                 |                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                           |
| 洗井后                                                   | 7.63 / 20                                                                                                                                                                 | 1.8178.3724200.54.7                                                                                                                                                                                                      | 7 188.7 菱、毛、池                                                                                                                             |
| 洗井水总体积 (L)                                            | 31.0                                                                                                                                                                      | 洗井结束时水位面至井口<br>高度(m)                                                                                                                                                                                                     | 7.63                                                                                                                                      |
| 水体产生气水速率应不水速率应不水位置为井(3) 连续=电导率变化范围上1位范围为由范围为土土位,测量浊度变 | 提、气曝等扰动。若选月<br>大于0.3L/min,洗 井过和<br>,则需要适当调低气囊缓<br>管底部,应控制贝勒管缓射<br>三次采样达到以下要求结束;<br>适 围为±3%; d) DO变{<br>(OmV; f) 10NTU <浊度<br>0mVi; 若含水层处于粉土<br>化值小于5NTU。<br>参数无法满足(3) 中的要 | 洗井应至少在成井洗井48h后开始。(2)<br>相气囊泵或低流量潜水泵,泵体进水口应<br>程应测定地下水位 ,确保水位下降小于10<br>或低流量 潜水泵的洗井流速。若采用贝勒<br>曼下降和上升,原则上洗 井水体积应达到<br>洗井: a)时变化范围为±0.1; b) 温度<br>比范围为±10%。当00<20mg/1时,其变化充<br><50NTU时,其变化范围应在±10%以内;<br>或粘土 地层时,连续多次洗井后的浊度 | 置于水面下1.0m左右,抽<br>lcm。若洗井过程中水位下<br>协管进行洗井,贝勒管汲<br>l3~5倍滞水体积。<br>逐变化范围为±0.5℃; c)<br>区围为±0.2mg/L; e) 0RP<br>浊度< 10NTU时,其变化<br>≥50NTU时,要求连续三次 |

采样人: 王宪 洪世海 梭核人: 王宪 审核人: 本加利 第1页共页

# 监测井洗井记录表

| 1.基本信息   | 2                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                           |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
|----------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|------------------|
| 采样日期: 20 | 25. 12:2                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             | III- NO. I                                                                | L lok L - E                                                    | 1 75 11 11                                                                     |                                                                                | _ =                                                                           |                                            | 不                |
| 监测井编号    |                                                                         | Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                           |                                                                | 是否完整                                                                           |                                                                                | ☑ 是                                                                           |                                            | 否                |
| 天气状况     | and store 1                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                           | 时内是                                                            | 否强降                                                                            | 制                                                                              | □ 是                                                                           |                                            | 省                |
| 采样点地面是   | 否积水:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>D</b>                                                                                                                    | 否                                                                         |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
| 2.洗井资料   | 15                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | 1.7                                                                       | -t-pet 11                                                      |                                                                                |                                                                                | // (                                                                          | 7                                          |                  |
| 洗井设备/方式  |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 勒管                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                           |                                                                | 1高度(                                                                           | (m)                                                                            | 4. 1                                                                          | 5                                          |                  |
| 井水深度 (m) |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                           | (水位                                                            |                                                                                |                                                                                | 4. 6                                                                          | 5                                          |                  |
| 井径 (m)   |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                           | k积(L                                                           |                                                                                |                                                                                | 7.                                                                            |                                            |                  |
| 洗井开始时间   |                                                                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5:67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | 洗井纸                                                                       | 吉東时间                                                           | i]                                                                             |                                                                                | 16:                                                                           | 55                                         |                  |
| 3.现场测定   |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             | , _                                                                       |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
| pH 值校正:  | 1 校正标准注                                                                 | 夜: 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 校正时                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 温度 16                                                                                                                       | 1.8                                                                       | C , 校正                                                         | E値:40                                                                          | /                                                                              |                                                                               |                                            |                  |
|          | 2 校正标准注                                                                 | 夜: 6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 校正时温                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 度 16                                                                                                                        | .8                                                                        | C, 校正                                                          | E值: 6.8                                                                        | 8                                                                              |                                                                               |                                            |                  |
| 仪器型号/编号: | □AZ-8603                                                                | STT-XC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>BANTE</b>                                                                                                                | 903P S1                                                                   | T-XCOL                                                         | 44                                                                             | / □其他:                                                                         |                                                                               |                                            |                  |
| 电导率校正:   | 1 校正标准注                                                                 | 夜: /00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /cm 电                                                                                                                       | 导率校正                                                                      | 值: /』                                                          | 5.0                                                                            | μS/cm                                                                          |                                                                               |                                            |                  |
| 仪器型号/编号: | □AZ-8603                                                                | STT-XC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊠</b> BAN                                                                                                                | TE 903P                                                                   | STT-XC                                                         | 0566                                                                           | □其他:                                                                           |                                                                               |                                            |                  |
| 溶解氧仪校正:  | 满点校正读数                                                                  | 数9.74 mv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 校正时温                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1度 16.                                                                                                                      | 8 °C,                                                                     | 校正时                                                            | 气压/02.                                                                         | ∠ KPa ;                                                                        | 溶解氧校                                                                          | 正值: 9.7                                    | o mv             |
| 仪器型号/编号: |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                           |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
| 気化还面由检核  | <b>正</b> . 粉玉                                                           | <b>护神滩</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mV 4                                                                                                                        | 可化还值                                                                      |                                                                |                                                                                |                                                                                | mV                                                                            |                                            |                  |
| 仪器型号/编号: | ØBANTE 90                                                               | 3P STT-X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | 其他:                                                                       |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
| 浊度校正:    | 校正标准液                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NTU,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 校正任                                                                                                                         | 直:                                                                        | 88.7                                                           |                                                                                | NTU                                                                            |                                                                               |                                            |                  |
| 仪器型号/编号: | ☑ WGZ-200B                                                              | STT-XC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 口非                                                                                                                          |                                                                           |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
| 4.洗井过程记录 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                           |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
| 时间       | 洗井汲<br>水速率<br>(L/min)                                                   | 水面距<br>井口高度<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 洗井出<br>水体积<br>(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 温度(℃)                                                                                                                       | 浊度<br>(NTU)                                                               | pH 值                                                           | 电导率(<br>µS/cm<br>)                                                             |                                                                                | 氧化原<br>化 原位                                                                   | 洗井水<br>(颜色、<br>、                           | 、性状<br>气味<br>冷质) |
| 洗井前      | /                                                                       | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.8                                                                                                                        | 47.3                                                                      | 6.88                                                           | 188.4                                                                          | 4.8                                                                            | 203.6                                                                         | 表. 花                                       | . £              |
| 第一次洗井    |                                                                         | 494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                           | 6.0E                                                           | 181.6                                                                          | 4.8                                                                            | 201.7                                                                         | 省 并                                        | 14               |
| 第二次洗井    |                                                                         | 6 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.6                                                                                                                        |                                                                           |                                                                | 182.0                                                                          | 4.8                                                                            | 202.0                                                                         |                                            | ip               |
| 第三次洗井    |                                                                         | 4.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             | 1423                                                                      | 6.83                                                           | 181.3                                                                          | 4.8                                                                            | 203.5                                                                         | 苗.无.                                       | it.              |
| 第四次洗井    |                                                                         | .,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                           |                                                                | -//                                                                            |                                                                                | 1                                                                             | -                                          |                  |
| 第 次洗井    |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                           |                                                                |                                                                                |                                                                                |                                                                               |                                            |                  |
| 洗井后      |                                                                         | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.3                                                                                                                        | 142.8                                                                     | 6.84                                                           | 181.8                                                                          | 4.7                                                                            | 201.8                                                                         | 黄、毛                                        | . 说.             |
| 洗井水总体积   | (L)                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                                                           | 洗井织<br>高度                                                                 |                                                                | 〈位面至                                                                           | 井口                                                                             | 上                                                                             | ,0/                                        |                  |
| 洗井要求     | 采水水速超位。<br>来水水速超位。<br>来水水速超位。<br>一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个 | 提、气曝<br>提大于0.3L/m<br>以下,管底采用。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次围。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是次压。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是处正。<br>是心。<br>是心。<br>是心。<br>是心。<br>是心。<br>是心。<br>是心。<br>是心 | 等扰动。若<br>in,洗 大<br>in,洗 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in,加 大<br>in 大<br>in 大<br>in 大<br>in 大<br>in 大<br>in 大<br>in 大<br>in | 选用气弧<br>过程或低<br>管缓慢下<br>信束化充<br>0<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | を<br>変成低<br>で<br>で<br>で<br>で<br>で<br>で<br>で<br>で<br>で<br>で<br>で<br>で<br>で | 充量潜水。<br>在位泵原化泵原化泵原化<br>一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个 | 泵,泵体注<br>i保水位下<br>井流速。<br>注<br>洗 井水体<br>为±0.1;<br>2 Omg/l时,<br>围应在±10<br>多次洗井) | 进水口应置降小于10cm<br>降小于10cm<br>等采用贝勒。<br>积应达到3<br>b) 温度3<br>其变化范围<br>%以内;<br>后的浊度≥ | 于水面下1<br>n。若洗井;<br>管进行洗井<br>5倍滞水体<br>变化范围为:<br>围为±0.2mg<br>浊度< 10N<br>50NTU时, | . Om左右,<br>. Om左右,<br>. 过程中水<br>. 一、积。<br> | 抽下汲 ORP          |
| 采样人: 王李  | 民湖                                                                      | <b>兰</b> 海                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 校                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 核人:                                                                                                                         | 王秀                                                                        | 2                                                              | 审核人:                                                                           | 东北                                                                             | 阅 第                                                                           | 万典                                         | 顶                |

188

# 8.3.2 地下水采样记录

broas

GDZK-JS.2-035-6

#### 地下水采样原始记录表

| 监测点位          | 监测位置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177 436                                        |                      | 样品性状描                         | AL.       |          | HE I                                                                                                                                                                                                              | 水井描                                                 | I ALL                                                  |                                            |                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|-------------------------------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------|
| 抽两尽业          | 监测位置<br>坐标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 采样<br>时间                                       | 颜色                   | 气味                            | 浊度        | 类型       | 井径<br>(m)                                                                                                                                                                                                         | 井深<br>(m)                                           | 水深<br>(m)                                              | 水位<br>(m)                                  | 采样项目                                                                                  |
| W1            | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13:50                                          | 东                    | 无                             | 读         | THE THE  | 0.0×7                                                                                                                                                                                                             | 9.45                                                | 3.64                                                   | 5-81                                       | 1-10                                                                                  |
| W1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13:10                                          | 灰                    | FL.                           | 连         | TIR:     | 10.057                                                                                                                                                                                                            | 9.45                                                | 3.64                                                   | 18.2                                       | 1.2.3.4.5.7.8.9.10                                                                    |
| W2            | W. 21. 680777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14:16                                          | 黃                    | ŧ                             | 浊         | Whi Roll | 10.057                                                                                                                                                                                                            | 8.14                                                | 3.40                                                   | 4.74                                       | 1-10                                                                                  |
| W3            | E:110.8229920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | 黄                    | E                             | 浊、        | 监设       | 10.047                                                                                                                                                                                                            | 10.68                                               | 3.12                                                   | 7.56                                       | 1-10                                                                                  |
| BJ1           | E:110.8241889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17:30                                          | 黄                    | É                             | 泸、        | 监论性      | 0.0±7                                                                                                                                                                                                             | 7.70                                                | 2.77                                                   | 6483                                       | 1-10                                                                                  |
| 以下空白          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                      |                               |           |          |                                                                                                                                                                                                                   |                                                     |                                                        |                                            |                                                                                       |
| 消酸酸化至pH=1-2:  | <ul> <li>☑</li> <li>☑</li> <li>∅</li> /ul> | 铅;□铁:≥铜<br>8;□有机氯次<br>□总汞;<br>□总氯;□鲁<br>多氯联苯:□ | (化物:□总 (化物:□总 (明基苯类化 | 格:<br>北合物:☑可萃□<br>瓜化物:<br>合物: |           |          | 百備請及招<br>海解氣 (<br>排<br>類<br>大<br>物<br>、<br>物<br>、<br>物<br>、<br>物<br>、<br>物<br>、<br>物<br>、<br>物<br>、<br>の<br>物<br>、<br>の<br>り<br>の<br>り<br>の<br>り<br>の<br>り<br>の<br>り<br>の<br>り<br>の<br>り<br>の<br>り<br>の<br>り<br>の | (除虫菊香<br>(量法):<br>(物: 每4<br>(升水加2<br>( 总硬度<br>: 加氢等 | fi类农药;<br>加1ml.二<br>0m1样品;<br>m1乙酸钙<br>定); 每;<br>【化钠。; | 加抗坏血<br>价硫酸锰;<br>加入25mg的<br>溶液,加1<br>升水样加浓 | 音液和2mL碱性试剂;<br>k抗坏血酸;并加透量盐酸溶液使pH≤2;<br>ml氢氧化钠溶液,再加入2mL当天配制的抗氧化剂溶液;<br>硼酸2ml,pH=1.5左右; |
| 尚容器:硫化物、溶刺    | 序氧、二价铁、BODS。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 、游声氣(分                                         | <b>(風)、息節</b>        | 、总酸度、SVO                      | Cs、VOCs、苯 | 胺类化合物    | 滴滴涕、溶                                                                                                                                                                                                             | 解製、石<br>多氯联苯                                        | 油类和对、粉类包                                               | 的植物油、B<br>比合物、石油                           | 605、微生物类、硝基苯类;<br>自烃、硝基苯类化合物;                                                         |
| 一 は は は は は は | W1  W2  W3  BJ1  以下空白  「「「「「「「」」」」  「「「」」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「」  「「  「「」  「「」  「「  「                                                                                                                                                                                                                                                                                                       | W1                                             | W1                   | W1                            | W1        | W1       | W1                                                                                                                                                                                                                | W1                                                  | W1                                                     | W1 に:10.計20ま。 13:よっ 左 元 ・                  | W1                                                                                    |

果样员 王龍 洪世海

审核人 老加別 第 1 页共 1 页

GDZK-JS.2-035-6

broas

#### 地下水采样原始记录表

|          |                                                                                                                   | 采样日期:プロン                                                 | . 1 6 . 5 )                                                                                                              |                                                             | 羊品性状描                                 | 200       |        |                                                                                                                          | 水井描                                                                        | 1000     |                                                     |                                                                                                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 样品编号     | 监测点位                                                                                                              | 监测位置<br>坐标                                               | 采样<br>时间                                                                                                                 | 颜色                                                          | 气味                                    | 浊度        | 类型     | 井径<br>(m)                                                                                                                | 井深<br>(m)                                                                  | 水深(m)    | 水位<br>(m)                                           | 采样项目                                                                                                                                                       |
| KB003    | 现场空白                                                                                                              |                                                          | _                                                                                                                        | £                                                           | £                                     | 无         |        | -                                                                                                                        |                                                                            |          |                                                     | 1-9                                                                                                                                                        |
| KB004    | 运输空白                                                                                                              |                                                          |                                                                                                                          | 无                                                           | E                                     | £         |        |                                                                                                                          |                                                                            |          |                                                     | 1-9                                                                                                                                                        |
| KBUOL    | 全程序空白                                                                                                             |                                                          |                                                                                                                          | E                                                           | £                                     | £         |        |                                                                                                                          |                                                                            |          |                                                     | 1-9                                                                                                                                                        |
| KBun 6   | 设备空白                                                                                                              | /                                                        |                                                                                                                          | £                                                           | £                                     | £         | /      |                                                                                                                          |                                                                            |          |                                                     | 1-9                                                                                                                                                        |
|          | 以下空白                                                                                                              |                                                          |                                                                                                                          |                                                             |                                       |           |        |                                                                                                                          |                                                                            |          |                                                     |                                                                                                                                                            |
|          |                                                                                                                   |                                                          |                                                                                                                          |                                                             |                                       |           |        |                                                                                                                          |                                                                            |          |                                                     |                                                                                                                                                            |
| 羊品现场处理情况 | 硫酸酸化至pH≤1:<br>硝酸酸化至pH=1-2;<br>盐酸酸化至pH<1;<br>盐酸酸化至pH<2;<br>每升水样加5m1盐酸;<br>加氢氧化钠,pH>12;<br>如有余氯每1L水样加<br>□挥发粉;磷酸酸化. | >循: ○極: ○極: ○標: ○<br>○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ | <ul> <li>②铅;□铁;□</li> <li>;</li> <li>⇒;□有机氯%</li> <li>□总汞;</li> <li>);□总氯;□</li> <li>□多氯联苯;□</li> <li>就酸铜,使硫值</li> </ul> | 司: □ 锌: □ 总<br>表 药和氯苯类作<br>氰化物: □ 总<br>引 硝基苯类化:<br>设 铜浓度约为1 | 名;<br>比合物;☑可萃!<br>瓜化物;<br>☆物;<br>g/L; | 収性石油烃;    |        | 百萬精<br>育解性<br>育<br>育<br>所<br>方<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的<br>的 | 以除虫菊香<br>食量法),<br>1、物:每4<br>6 升水加2<br>1 、加氢<br>1 、加氢<br>5 、别酸 <sup>3</sup> | man      | 加抗坏血<br>价硫酸锰剂<br>和入25mg的<br>溶液,加1<br>升水样加浓<br>H7-9; | pH=6-8, 如有余氣幅1LM80g碳代硫酸钠;<br>酸 0.01~0.02g;<br>溶液和2aL碱性抗剂;<br>抗坏血酸;并加透量盐酸溶液使pH≤2;<br>圆氢氧化钠溶液,将加入2mL当天配制的抗氧化剂溶液;<br>硝酸2ml,pH=1.5左右;<br>□二价铁,每100ml水拌加2ml浓盐酸; |
| 样品<br>管理 | 单独采样:百箇清及拟阳<br>装满容器:硫化物、溶射<br>不能润洗:微生物类、3                                                                         | ¥氧、二价铁、BOD                                               | 5、、游离氯                                                                                                                   | 余氣)、总氣                                                      | 、总酸度、SVO                              | Cs、VOCs、苯 | 按类化合物. | 育清涕、浩<br>、丙烯腈、                                                                                                           | 解氧、石<br>多氯联苯                                                               | 油类和动、酚类化 | 植物油、B                                               | 005、微生物类、硝基苯类:<br>血烃、硝基苯类化合物:                                                                                                                              |
| 分析項目     | 、芘、苯并 (g,h                                                                                                        | , i) 菲、萘、                                                | 苯并[a] [                                                                                                                  | x 苯并[a                                                      | ]花、苯并                                 | [b] 荧蒽、   | 苯并[k]  | 荧蔥、                                                                                                                      | <b>植、二</b>                                                                 | 苯并[8     | a, h]蔥                                              | 4.多环芳烃(                                                                                                                                                    |

平样员 王强 法世海

审核人 友加別

第 1 页共 1 页

#### 样品交接领用登记表

单位名称: 茂名天保再生资源发展有限公司

任务单编号: 20231226005

|    |         |       | 交样人员均 | 典写                                                    |                                                                                 | 接样人员填写        |      |
|----|---------|-------|-------|-------------------------------------------------------|---------------------------------------------------------------------------------|---------------|------|
| 序号 | 样品编号    | 样品类型  | 样品数量  | 样品保存方式                                                | 分析项目                                                                            | 记录及样品<br>是否完好 | 备注   |
| 1  | was /   |       | 10    | ☑ 密封冷藏 □ 密封干燥<br>□ 密封室温 □ 特殊保存                        | 铜、铅、汞、镉、镍、砷、铬、锑、锰、<br>锌、锡、苯系物(茶、甲苯、二甲苯、乙                                        | 旦是口否          |      |
| 2  | Nooz    |       | 10    | <ul><li>☑ 密封冷藏 □ 密封干燥</li><li>□ 密封室温 □ 特殊保存</li></ul> | 苯、苯乙烯)、多环芳烃(应烯、宽、芴<br>、菲、蒽、荧蒽、芘、苯并(g,h,i) 芘、<br>泰、苯并[a]蔥、苯并[a]芘、苯并[b]荧蒽         | □ 是 □ 否       |      |
| 3  | was 3   |       | 10    | <ul><li>☑密封冷蔵 □ 密封干燥</li><li>□密封室温 □ 特殊保存</li></ul>   | 、苯并[k]荧慈、篇、二苯并[a, h]葱、茚<br>并[1, 2, 3-cd]芘)、邻苯二甲酸二(2-乙<br>基己基)酯、邻苯二甲酸丁基苄基酯、邻苯    | □ 是 □ 否       |      |
| 4  | woo 4   |       | 10    | <ul><li>☑密封冷藏 □ 密封干燥</li><li>□密封室温 □ 特殊保存</li></ul>   | 二甲酸二正辛酯、可萃取性石油烃(C10-<br>C40)、氟化物、氨氮、耗氧量                                         | 22是口否         |      |
| 5  | KB003   | - 地下水 | 9     | <ul><li>☑密封冷藏 □ 密封干燥</li><li>□密封室温 □ 特殊保存</li></ul>   | 钢、铅、汞、镉、镍、砷、铬、锑、锰、<br>锌、锡、苯系物(苯、甲苯、二甲苯、乙                                        | D 是 D 否       | 现场空白 |
| 6  | KB004   |       | 9     | ☑密封冷藏 □ 密封干燥 □ 密封室温 □ 特殊保存                            | 苯、苯乙烯)、多环芳烃(苋烯、苊、芴<br>、菲、蕈、贾蒽、芘、苯并(g,h,i) 芘、<br>蔡、苯并[a]蔥、苯并[a]芘、苯并[b]荧蒽         | 卫是口否          | 运输空白 |
| 7  | KB00 K  |       | 9     | ☑密封冷藏 □ 密封干燥 □ 密封室温 □ 特殊保存                            | 、苯并[k]荧葱、蘑、二苯并[a, h]蔥、茚<br>并[1, 2, 3-cd]芘)、邻苯二甲酸二(2-乙<br>基己基)酯、邻苯二甲酸二正辛酯、可萃取    | 2 是口否         | 全程序空 |
| 8  | KB so 6 |       | 9     | ☑密封冷藏 □ 密封干燥 □ 密封室温 □ 特殊保存                            | 性石油烃(C10-C40)、氟化物、氮氮、耗氧<br>量                                                    | 夕是 口否         | 设备空白 |
| 9  | wasla   |       | 9     | ☑ 密封冷藏 □ 密封干燥<br>□ 密封室温 □ 特殊保存                        | 铜、铅、汞、镉、镍、砷、铬、锑、锰、<br>锌、锡、苯系物(苯、甲苯、二甲苯、乙<br>苯、苯乙烯)、多环芳烃(危烯、疮、芴                  | 2 是口否         | 现场平行 |
|    | 以下空白    |       |       | □ 密封冷藏 □ 密封干燥<br>□ 密封室温 □ 特殊保存                        | 、華、蔥、荧蔥、花、苯并 (g, h, i) 花、<br>萘、苯并[a]蔥、苯并[a]芘、苯并[b]荧蒽<br>、苯并[k]荧蒽、蘑、二苯并[a, h]蔥、茚 | □是□否          |      |
|    |         |       |       | □ 密封冷藏 □ 密封干燥<br>□ 密封室温 □ 特殊保存                        | 并[1, 2, 3-cd] 芘)、邻苯二甲酸二(2-乙<br>基己基)酯、邻苯二甲酸丁基苄基酯、邻苯<br>二甲酸二正辛酯、氟化物、氮氮、耗氧量        | 口是口否          |      |
|    |         |       |       | □ 密封冷藏 □ 密封干燥<br>□ 密封室温 □ 特殊保存                        |                                                                                 | □是□否          |      |

broas

GDZK-ZL. 4-014-3

#### 仪器设备领用/使用/归还检查记录表

第 | 页 共 | 页 领 用 仪器运行状况 接收 设备名称 设备编号 归还人 备注 领用时状 主机 领用人 使用日期 附设备 接收状况 设备责任人 王强 }2023.12.28 BANTE-803P 577-XC0X46 左加见 WGZ-200B 577 XC0768

注:1. " 」"表示正常、 "0"表示小故障,可排除、 "×"表

示故障。2. 仪器故障情况请在备注栏中写明。

# 8.3.3 土壤采样记录

broas

GDZK-JS. 2-028-4

#### 土壤采样原始记录表

受測单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: □HJ/T166-2004 □HJ25.1-2019 □HJ25.2-2019 □HJ1019-2019 □GB36600-2018 采样日期: ンの23、/ン、2 / 任务单編号: 20231226005

|   | 米样1    | 依据:☑HJ/I | [166-2004 ☑HJ25.1-20                 | )19 🗹HJ2 | 5.2-2 | 019 2                 | HJ1019             | -2019 | △GB300                    | 00-2018                  |                    |                             |      |        |          |
|---|--------|----------|--------------------------------------|----------|-------|-----------------------|--------------------|-------|---------------------------|--------------------------|--------------------|-----------------------------|------|--------|----------|
|   | 字<br>号 | 采样点名称    | 经纬度坐标                                | 样品编号     | 样品 数量 | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色  | 湿度<br>干/潮/湿<br>/重潮/极<br>潮 | 根系/砂砾<br>无根系/少量/中量/多量/密集 | 砂土/砂壌土             | 检测项目                        | 容器材质 | 现场处理   | 采样点原功能用途 |
|   |        | ~ /      | E:110.8230k3°                        | ,        | 1     | Pob                   | 0-20               | 女品    | 遠                         | 多量                       | 砂塘土                | 多环芳烃 (                      | 3    | В      |          |
| 1 | I      | TI       | E:110.823053°<br>N:21.689°33°        | 500/     | 2     | fioy                  | Ł                  | 黄椋    | 134                       | 罗宝                       | 64.8CT             | 苯系物 ( 苯、甲苯、二甲<br>苯、乙苯、苯乙烯 ) | 1    | A<br>D |          |
|   |        |          |                                      |          | 1     | 0.0/                  | 0-20               |       |                           |                          |                    | 水分                          | 2    | В      |          |
| 现 | 场情况    | 描述:      |                                      |          | 1     | P206                  | 0-20               | 备注:   |                           |                          |                    | 3.7                         |      |        |          |
| ž |        |          | 乙烯-硅胶衬垫螺旋盖的40 mlk<br>0~4℃避光保存 、加有10m |          |       | 宗色玻璃瓶<br>級) 保护?       |                    |       | 玻璃瓶 4、7                   |                          | 袋; 5、PVC<br>C 室温干燥 | 土壤样品袋; 6、其他材质;<br>D 避光冷藏    |      |        |          |

耕, 那 真元 多数

機或直云

轍 老奶奶

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: ☑HJ/T166-2004 ☑HJ25.1-2019 ☑HJ25.2-2019 ☑HJ1019-2019 ☑GB36600-2018

采样日期: 2023.12.2 任务単編号: 20231226005

| 米  | 样依据: ②HJ | /T166-2004 ☑HJ25.1-2                   | 019 AH) | 25.2-2 | 019                   | H11019             | -2019 | △GR300                    | 00-2016 |                     |                           |      |      |             |
|----|----------|----------------------------------------|---------|--------|-----------------------|--------------------|-------|---------------------------|---------|---------------------|---------------------------|------|------|-------------|
| 序号 | 采样点名称    | 经纬度坐标                                  | 样品编号    | 样品数量   | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色  | 湿度<br>干/潮/湿<br>/重潮/极<br>潮 |         | 砂土/砂壤土              | 检测项目                      | 容器材质 | 现场处理 | 采样点<br>功能用: |
|    |          | F:110.8220+2°                          |         | 1      |                       |                    |       |                           |         | 4                   | 铜、铅、镉、镍、砷、铬、<br>锑、锰、锌、氟化物 | 5    | D    |             |
| 2  | TI       | E:110.823053°<br>N:21.688033°          | 5001    | 1      | P:06                  | 0-20               | 黄棕    | 埃司                        | 多量      | 砂壤土                 | 锡                         | 5    | D    |             |
|    |          | N.21.68 POSS                           |         | 1      |                       |                    |       |                           |         |                     | 汞                         | 3    | D    |             |
|    |          | 以下空白                                   | III s   |        |                       |                    |       |                           |         |                     |                           |      |      |             |
| 1  |          | 以下空白                                   |         |        |                       |                    |       |                           |         |                     |                           |      |      |             |
| 场情 | · 祝描述:   |                                        |         |        |                       |                    | 备注:   |                           |         |                     |                           |      |      |             |
|    |          | 氟乙烯-硅胶衬垫螺旋盖的40 ml<br>截 0~4℃避光保存 、加有10s |         |        |                       |                    |       | 玻璃瓶 4、<br>避光保存(填          |         | .袋; 5、PVC<br>C 室温干燥 | 土壤样品袋; 6、其他材质;<br>D 避光冷藏  |      |      |             |
| 采  | #: \$ 3  | 元 是教皇                                  |         |        |                       |                    | 校核: 引 | 3 点一                      | 3-      |                     | ■K: 大大 大小 们               | 第 2  | 页 共  | 2 页         |

broas

土壤采样原始记录表

GDZK-JS. 2-028-4

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 妥样依据: □HJ/T166-2004 □HJ25.1-2019 □HJ25.2-2019 □HJ1019-2019 □GB36600-2018

采样日期: 2023, /2・2 任务单编号: 20231226005

|    |       |                               |       |          | 采样时            |                    |       | 湿度                  | 根系/砂砾           | 土壤质地  |             |      |          |          |
|----|-------|-------------------------------|-------|----------|----------------|--------------------|-------|---------------------|-----------------|-------|-------------|------|----------|----------|
| 序号 | 采样点名称 | 经纬度坐标                         | 样品编号  | 样品<br>数量 | 间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色  | 干/潮/湿<br>/重潮/极<br>潮 | 无根系/少量/中量/多量/密集 |       | TERES II    | 容器材质 | 现场<br>处理 | 采样点质功能用效 |
|    | TI    | E: 1/0.823052°                | , .   | 1        | P=06           | 0-20               | 14.11 | :41                 | 6/3             | 2 600 | 多环旁烃 (      | 3    | В        |          |
| 1  |       | E:1/0.823053°<br>N:21.68p033° | 500 a | 2        | 9:04           | £                  | 黄棕    | 袽                   | 多量              | 砂壤土   | 苯系物(苯、甲苯、二甲 | 1    | Α        |          |
|    |       |                               |       | 2        |                |                    |       |                     |                 |       | 苯、乙苯、苯乙烯)   | 1    | D        |          |
|    |       |                               |       | 1        | P2.06          | 0-20               |       |                     |                 |       | 水分          | 2    | В        |          |
| 场  | 青况描述: |                               |       |          |                |                    | 备注:   |                     |                 |       |             |      |          |          |

雅 邓 直云 多处生

機可其五 職点加例

受測单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇蓄枝塘枫林坝268号大院 采样依据: [7]HJ/T166-2004 [7]HJ25.1-2019 [7]HJ25.2-2019 [7]HJ25.2-2019 [7]HJ25.2-2019 [7]HJ25.2-2019

采样日期: 20231226005

| T   |               |                               |       |      | 采样时      |                    |      | 湿度                  | 根系/砂砾           | 土壤质地                              |                       |      |          |          |
|-----|---------------|-------------------------------|-------|------|----------|--------------------|------|---------------------|-----------------|-----------------------------------|-----------------------|------|----------|----------|
| 序号  | 采样点名称         | 经纬度坐标                         | 样品编号  | 样品数量 | 间<br>(nt | 采样断<br>面深度<br>(cm) | 土壤颜色 | 干/潮/湿<br>/重潮/极<br>潮 | 无根系/少量/中量/多量/密集 | 砂土/砂壌土<br>/轻壌土/中<br>壌土/重壌土<br>/粘土 | 检测项目                  | 容器材质 | 现场<br>处理 | 采样点质功能用途 |
|     |               | E: 40 822062°                 |       | 1    |          |                    |      |                     |                 |                                   | 铜、铅、镉、镍、砷、铬、锑、锰、锌、氟化物 | 5    | D        |          |
| 2   | TI            | E:110.823043°<br>N:21.687033° | Soola | 1    | 1206     | 0-20               | 黃棕   | 嶼                   | 多墨              | 砂壤土                               | 锡                     | 5    | D        |          |
|     |               | N: 21.68 P 033                |       | 1    |          |                    |      |                     |                 |                                   | 汞                     | 3    | D        |          |
|     |               | 以下空白                          |       |      |          |                    |      |                     |                 |                                   |                       |      |          |          |
|     |               |                               |       |      |          |                    |      |                     |                 |                                   |                       |      |          |          |
|     |               | 以下空白                          |       |      |          |                    |      |                     |                 |                                   |                       |      |          |          |
| 见场作 | <b></b> 方况描述: | 1                             |       |      |          |                    | 备注:  |                     |                 |                                   |                       |      |          |          |

雅,那直云 多处

機形直式 職 本加同

broas

#### 土壤采样原始记录表

GDZK-JS. 2-028-4

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: 図HJ/T166-2004 図HJ25.1-2019 図HJ25.2-2019 図HJ1019-2019 図GB36600-2018

采样日期: 2023、/2・2 任务单编号: 20231226005

| 序 采村号 | 样点名称 | 经纬度坐标                          | 样品编号 | 样品 | 间         | 采样断         |      |                     |   |     |              |      |          |          |
|-------|------|--------------------------------|------|----|-----------|-------------|------|---------------------|---|-----|--------------|------|----------|----------|
|       |      |                                |      | 数量 | (时,<br>分) | 面深度<br>(cm) | 土壤颜色 | 干/潮/湿<br>/重潮/极<br>潮 |   |     | 18.00-24.13  | 容器材质 | 现场<br>处理 | 采样点题功能用证 |
|       |      | E:110.822322°                  | į    | 1  | 1-27      | 0-20        |      |                     |   |     | 多环芳烃 (       | 3    | В        |          |
| 1 T   | T2   | E: 1/0.822322°<br>N:21.689850° | 5002 | 2  | Pir       | 8           | 棕ू   | Ŧ                   | 幔 | 砂坡土 | 苯系物 (苯、甲苯、二甲 | 1    | Α        |          |
|       |      |                                |      | 2  | ()        | 8           |      |                     |   |     | 苯、乙苯、苯乙烯)    | 1    | D        |          |
|       |      |                                |      | 1  | [22]      | 0-20        | 备注:  |                     |   |     | 水分           | 2    | В        |          |

雅 邓 直云 多教生

機可立立 職 本的同

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: [7]HJ/T166-2004 [7]HJ25.1-2019 [7]HJ25.2-2019 [7]HJ1019-2019 [7]G1836600-7018

采样日期: 入023、/2・2 任务単編号: 20231226005

| 序号  | 采样点名称 | 经纬度坐标                        | 样品编号 | 样品<br>数量 | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色 | 干/潮/湿<br>/重潮/极<br>潮 |    |     | 12.03-X H             | 容器材质 | 现场<br>处理 | 采样点质功能用途 |
|-----|-------|------------------------------|------|----------|-----------------------|--------------------|------|---------------------|----|-----|-----------------------|------|----------|----------|
|     |       | F: 110 822222                |      | 1        |                       |                    |      |                     |    |     | 铜、铅、镉、镍、砷、铬、锑、锰、锌、氟化物 | 5    | D        |          |
| 2   | 72    | E:110.822322°<br>N:21.68886° | 5002 | 1        | P227                  | 0-20               | 推斷   | 千                   | 中莹 | 砂壤土 | 锡                     | 5    | D        |          |
|     |       | N: 21.681850                 |      | 1        |                       |                    |      |                     |    |     | 汞                     | 3    | D        |          |
|     |       | 以下空白                         |      |          |                       |                    |      |                     |    |     |                       |      |          |          |
|     |       |                              |      |          |                       |                    |      |                     |    |     |                       |      |          |          |
| 场情况 | 兄描述:  | 以下空白                         |      |          |                       |                    | 备注:  |                     |    |     |                       |      |          |          |

雅 邓 直元 多好

機形 直云 輔 走加州 第 2 页 共 2 页

broas

#### 土壤采样原始记录表

GDZK-JS. 2-028-4

受測单位: 茂名天保再生资源发展有限公司 単位地址: 茂名市茂南区公馆镇荔枝塘枫林墹268号大院 采样日期: 2023.1226005 采样依据: 同HJ/T166-2004 同H125 1-2019 同H125 2-2019 同H130 2-2019 同H130 2-2019 日本日本 1-2019 日本 1-2

| 采  | 尺样依据: ☑HJ     | /T166-2004 ☑HJ25.1-2                    | 019 ☑HJ | 25.2-2 | 019 🗹                 | HJ1019             | -2019 | ☑GB366                    | 00-2018 |                    |                          |      |      |     |
|----|---------------|-----------------------------------------|---------|--------|-----------------------|--------------------|-------|---------------------------|---------|--------------------|--------------------------|------|------|-----|
| 序号 | 采样点名称         | 经纬度坐标                                   | 样品编号    | 样品数量   | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色  | 湿度<br>干/潮/湿<br>/重潮/极<br>潮 |         | 砂土/砂壌土             | TENO-N II                | 容器材质 | 现场处理 | 采样点 |
|    | T)            | E:1/0.82226p°                           |         | 1      | P=42                  | 0-20               |       |                           | ,       |                    | 多环芳烃 (                   | 3    | В    |     |
| 1  | 13            | E:110.822369°<br>N:21.690418°           | 5003    | 2      | Pires                 | 8                  | 椋     | 岭                         | 建       | 轻壞土                | 苯系物(苯、甲苯、二甲              | 1    | Α    |     |
|    |               |                                         |         | 2      | 1-60                  | ٥                  |       |                           |         |                    | 苯、乙苯、苯乙烯)                | 1    | D    |     |
|    |               |                                         |         | 1      | P:42                  | 0-20               |       |                           |         |                    | 水分                       | 2    | В    |     |
| 场信 | <b>肯况描述</b> : |                                         |         |        |                       |                    | 备注:   |                           |         |                    |                          |      |      |     |
|    | 现场处理: A 冷灘    | 頁乙烯-硅胶衬垫螺旋盖的40 mlt<br>₹ 0~4℃避光保存 、加有10m |         |        | 家色玻璃瓶 股)保护者           |                    |       | 玻璃瓶 4、4                   |         | 袋: 5、PVC<br>C 室温干燥 | 土壤样品袋; 6、其他材质;<br>D 避光冷藏 |      |      |     |
| 采  | # 邓直          | 元 多处                                    |         |        |                       |                    | 校技: 7 | 严直                        | 3       |                    | 地 声地图                    | 第 1  | 页    | ŧ 2 |

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院

采样日期: 2023.12,29任务单编号: 20231226005

|    |               |                              |      |      | 采样时             | 采样断         |      | 湿度      | 根系/砂砾           |                          |                           |      |          |          |
|----|---------------|------------------------------|------|------|-----------------|-------------|------|---------|-----------------|--------------------------|---------------------------|------|----------|----------|
| 序号 | 采样点名称         | 经纬度坐标                        | 样品编号 | 样品数量 | 间<br>(时,<br>分)  | 面深度<br>(cm) | 土壤颜色 | /重潮/极   | 无根系/少量/中量/多量/密集 | 砂土/砂壌土 /轻壌土/中 壌土/重壌土 /粘土 |                           | 容器材质 | 现场<br>处理 | 采样点质功能用途 |
|    | T>            | E:110.822369°<br>N:21.69048° |      | 1    |                 |             |      | . 4     | / 7             | 4                        | 铜、铅、镉、镍、砷、铬、<br>锑、锰、锌、氟化物 | 5    | D        |          |
| 2  | (3            | (2 ( 29                      | 4003 | 1    | P:42            | 0-20        | 槟    | 海山      | 为堂              | 轻爱上                      | 锡                         | 5    | D        |          |
|    |               | N. 4. 60 48                  |      | 1    |                 |             |      |         |                 |                          | 汞                         | 3    | D        |          |
|    |               | 以下空白                         |      |      |                 |             |      |         |                 |                          |                           |      |          |          |
|    |               |                              |      |      |                 |             |      |         |                 |                          |                           |      |          |          |
| T  |               | 以下空白                         |      |      |                 |             |      |         |                 |                          |                           |      |          |          |
| 场信 | <b>肯况描述</b> : |                              |      |      |                 |             | 备注:  |         |                 |                          |                           |      |          |          |
|    |               | 氟乙烯-硅胶衬垫螺旋盖的40 ml;           |      |      | 宗色玻璃瓶<br>汲) 保护剂 |             |      | 玻璃瓶 4、4 |                 | 袋; 5、PVC<br>C 室温干燥       | 土壤样品袋; 6、其他材质;<br>D 避光冷藏  |      |          |          |

雅 邓 直云 多数

機, 那 直至 輔, 去加问 第 2 页共 2 页

broas

#### 土壤采样原始记录表

GDZK-JS. 2-028-4

受測单位: 茂名天保再生资源发展有限公司 単位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样日期: 1013.1-2019 任务单编号: 20231226005 采样依据: ☑HJ/T166-2004 ☑HJ25.1-2019 ☑HJ25.2-2019 ☑HJ1019-2019 ☑GB36600-2018

| Ä   | 《样依据: ☑HJ/ | T166-2004 ☑HJ25.1-2                   | 2019 \square HJ: | 25.2-2 | 019 🗹                 | HJ1019             | -2019 | ☑GB366                    | 00-2018                  |                     |                          |      |      |          |
|-----|------------|---------------------------------------|------------------|--------|-----------------------|--------------------|-------|---------------------------|--------------------------|---------------------|--------------------------|------|------|----------|
| 序号  | 采样点名称      | 经纬度坐标                                 | 样品编号             | 样品数量   | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色  | 湿度<br>干/潮/湿<br>/重潮/极<br>潮 | 根系/砂砾<br>无根系/少量/中量/多量/密集 | 砂土/砂壤土              | 18.00-24.14              | 容器材质 | 现场处理 | 采样点题功能用证 |
|     |            | Ē:1/4.823.874°                        |                  | 1      | 10:48                 | 0-20               | ,,,   |                           | 1.7                      | ,                   | 多环芳烃 (                   | 3    | В    |          |
| 1   | 74         | E:1/0.823875°<br>N: 21.687312°        | Sook             | 2      | 6:46                  | 10                 | 蕃棕    | 干                         | 幔                        | 砂壤土                 | 苯系物 (苯、甲苯、二甲             | 1    | Α    |          |
|     |            | 5                                     |                  | 2      |                       |                    |       |                           |                          |                     | 苯、乙苯、苯乙烯)                | 1    | D    |          |
|     |            |                                       |                  | 1      | 10:48                 | 0-20               |       |                           |                          |                     | 水分                       | 2    | В    |          |
| 见场作 | 青况描述:      |                                       |                  |        |                       |                    | 备注:   |                           |                          |                     |                          |      |      |          |
|     |            | [乙烯-硅胶衬垫螺旋盖的40 mlf<br>0~4℃避光保存 、加有10m |                  |        | 综色玻璃瓶<br>版) 保护者       |                    |       | 玻璃瓶 4、4                   |                          | .袋: 5、PVC<br>C 室温干燥 | 土壤样品袋: 6、其他材质:<br>D 避光冷藏 |      |      |          |

輔 基加州 第1页共2页

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: ☑HJ/T166-2004 ☑HJ25.1-2019 ☑HJ25.2-2019 ☑HJ1019-2019 ☑GB36600-2018

采样日期: 2023. / 2. 2 任务单编号: 20231226005

| 序号 | 采样点名称 | 经纬度坐标                          | 样品编号 | 样品数量 | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色     | 湿度<br>干/潮/湿<br>/重潮/极<br>潮 | 无依然/少 | 砂土/砂壌土<br>/轻壌土/中<br>壌土/重壌土 | 1E03-X 1                  | 容器材质 | 现场处理 | 采样点质功能用途 |
|----|-------|--------------------------------|------|------|-----------------------|--------------------|----------|---------------------------|-------|----------------------------|---------------------------|------|------|----------|
|    |       | F:1/0.123874°                  |      | 1    |                       |                    | <i>d</i> |                           |       | /粘土                        | 铜、铅、镉、镍、砷、铬、<br>锑、锰、锌、氟化物 | 5    | D    |          |
| 2  | 14    | E:110.823875°<br>N:21.689 312° | 4004 | 1    | 10:18                 | 0-20               | 黄棕       | Ŧ                         | 中堂    | 砂壤土                        | 锡                         | 5    | D    |          |
|    |       | N. 21.68 312                   |      | 1    |                       |                    |          |                           |       |                            | 汞                         | 3    | D    |          |
| -  |       | 以下空白                           |      |      |                       |                    |          |                           |       |                            |                           |      |      |          |
| 1  |       | 以下空白                           |      |      |                       |                    |          |                           |       |                            |                           |      |      |          |
| 场情 | 况描述:  |                                |      |      |                       |                    | 备注:      |                           |       |                            |                           |      |      |          |

群邓直元 李松

機可達之 輔 多如何 第2页共2页

broas

#### 土壤采样原始记录表

GDZK-JS. 2-028-4

受測单位: 茂名天保再生资源发展有限公司 単位地址: 茂名市茂南区公馆镇荔枝塘枫林墹268号大院 采样日期: プロンメ・ノン・ 任务単編号: 20231226005 采样依据: 図HJ/T166-2004 図HJ25.1-2019 図HJ1019-2019 図GB36600-2018

| 采  | 样依据: UHJ | /T166-2004 ☑HJ25.1-2               | 2019 ☑HJ | 25.2-2 | 019 🗹                 | HJ1019             | -2019 | ☑GB366                     | 00-2018               |                    |                          |      |       |        |
|----|----------|------------------------------------|----------|--------|-----------------------|--------------------|-------|----------------------------|-----------------------|--------------------|--------------------------|------|-------|--------|
| 序号 | 采样点名称    | 经纬度坐标                              | 样品编号     | 样品数量   | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色  | 湿度<br>,干/潮/湿<br>/重潮/极<br>潮 | 根系/砂砾 无根系/少量/中量/多量/密集 | 砂土/砂壤土             | 经码外口                     | 容器材质 | 现场处理  | 采样点功能用 |
|    |          | E-110 8221/1°                      |          | 1      | 10:10                 | 0-20               |       |                            |                       |                    | 多环芳烃 (                   | 3    | В     |        |
| 1  | TE       | E:110.823166°<br>M:21.690612°      | Soof     | 2      | 10:07                 | 10                 | 梾     | 干                          | 多量                    | 砂壤土                | 苯系物 (苯、甲苯、二甲             | 1    | A     |        |
|    |          |                                    |          | 2      |                       |                    |       |                            |                       |                    | 苯、乙苯、苯乙烯)                | 1    | D     |        |
|    |          | 2                                  |          | 1      | 10:10                 | 0-20               |       |                            |                       |                    | 水分                       | 2    | В     |        |
| 场情 | 况描述:     |                                    |          |        |                       |                    | 备注:   |                            |                       |                    |                          |      |       |        |
|    |          | 夏乙烯-硅胶衬垫螺旋盖的40 m1柱 0°4℃避光保存 、加有10m |          |        | 家色玻璃瓶 吸)保护者           |                    |       | 玻璃瓶 4、7                    |                       | 接: 5、PVC<br>C 室温干燥 | 土壤样品袋: 6、其他材质:<br>D 避光冷藏 |      |       | e :    |
| 采  | #: P 3   | 录 多数                               |          |        |                       |                    | 校核:   | 邓真                         | 孟                     |                    | 戦 基加何                    | 第二   | 1 页 扫 | 共 2    |

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: ☑HJ/T166-2004 ☑HJ25.1-2019 ☑HJ25.2-2019 ☑HJ1019-2019 ☑GB36600-2018

采样日期: 2025、12・27 任务单编号: 20231226005

| 序号 | 采样点名称 | 经纬度坐标                         | 样品编号 | 样品数量 | 采样时<br>间<br>(时, | 采样断<br>面深度<br>(cm) | 土壤颜色 | 湿度  | 无恨乐/少 | 砂土/砂壌土/轻壌土/中  | 135.043-34 IA             | 容器材质 | 现场处理 | 采样点原<br>功能用途 |
|----|-------|-------------------------------|------|------|-----------------|--------------------|------|-----|-------|---------------|---------------------------|------|------|--------------|
|    |       |                               |      |      | 分)              | (cm)               |      | 潮   | 量/密集  | 壤土/重壤土<br>/粘土 |                           |      |      |              |
|    | TL    | E:110.822166°<br>N:21.690612° |      | 1    |                 |                    |      |     |       | ,             | 铜、铅、镉、镍、砷、铬、<br>锑、锰、锌、氟化物 | 5    | D    |              |
| 2  | 15    | 2.10 80 100                   | Soot | 1    | 10:10           | 0-20               | 核    | Ŧ   | 多量    | 砂坡土           | 锡                         | 5    | D    |              |
|    |       | N:21.6(0612                   |      | 1    |                 |                    |      | 4.7 |       |               | 汞                         | 3    | D    |              |
|    |       | 以下空白                          |      |      |                 |                    |      |     |       |               |                           |      |      |              |
|    |       |                               |      |      |                 |                    |      |     |       |               |                           |      |      |              |
|    |       | 以下空白                          |      |      |                 |                    |      |     |       |               |                           |      |      |              |
| 场情 | 况描述:  |                               |      |      |                 |                    | 备注:  |     |       |               |                           |      |      |              |

雅 邓 直云 多数

嫩 勇 直元

動きなり

第 2 页 共 2 页

broas

#### 土壤采样原始记录表

GDZK-JS. 2-028-4

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林坰268号大院 采样依据: 図HJ/T166-2004 図HJ25.1-2019 図HJ25.2-2019 図HJ1019-2019 図GB36600-2018

采样日期: 2023、/2、4 任务单编号: 20231226005

|    |        |                               |      |      | 采样时            | 采样断         |      | 湿度                  | 根系/砂砾           |     |             |      |          |              |
|----|--------|-------------------------------|------|------|----------------|-------------|------|---------------------|-----------------|-----|-------------|------|----------|--------------|
| 序号 | 采样点名称  | 经纬度坐标                         | 样品编号 | 样品数量 | 间<br>(时,<br>分) | 面深度<br>(cm) | 土壤颜色 | 干/潮/湿<br>/重潮/极<br>潮 | 无根系/少量/中量/多量/密集 |     | 1五04-74日    | 容器材质 | 现场<br>处理 | 采样点!<br>功能用i |
|    | т/     | E: 110.223841°                | / /  | 1    | 10:36          | 0-20        |      |                     |                 |     | 多环芳烃 (      | 3    | В        |              |
| 1  | T6     | E:110.223841°<br>N:21.690276° | 5006 | 2    | 634            | 12          | 椋    | Ŧ                   | 室               | 多壤土 | 苯系物(苯、甲苯、二甲 | 1    | Α        |              |
|    |        |                               |      | 2    | 10-57          | 1-          |      |                     |                 |     | 苯、乙苯、苯乙烯)   | 1    | D        |              |
|    |        |                               |      | 1    | 10:36          | 0-20        |      |                     |                 |     | 水分          | 2    | В        |              |
| 场作 | · 况描述: |                               |      |      |                |             | 备注:  |                     |                 |     |             |      |          |              |

雅邓直云 多处

機 那 直云 轍 本加州

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: ☑HJ/T166-2004 ☑HJ25.1-2019 ☑HJ25.2-2019 ☑HJ1019-2019 ☑GB36600-2018

采样日期: 2023.12、2 任务単编号: 20231226005

| 序号 | 采样点名称        | 经纬度坐标                         | 样品编号 | 样品数量 | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 土壤颜色  | 湿度<br>干/潮/湿<br>/重潮/极<br>潮 |    | 砂土/砂壤土             | 检测项目                      | 容器材质 | 现场处理 | 采样点题功能用证 |
|----|--------------|-------------------------------|------|------|-----------------------|--------------------|-------|---------------------------|----|--------------------|---------------------------|------|------|----------|
|    | 7/           | E:110.823841°<br>N:21.690276° | ,    | 1    | / /                   |                    | 1.5   | 14                        | 中景 | 砂模土                | 铜、铅、镉、镍、砷、铬、<br>锑、锰、锌、氟化物 | 5    | D    |          |
| -  | 16           | 10.010                        | 5006 | 1    | 10:36                 | 0-20               | M     | 1                         | 7基 | 69Vg ±             | 锡                         | 5    | D    |          |
|    |              | N.21. 6902/6                  |      | 1    |                       |                    |       |                           |    |                    | 汞                         | 3    | D    |          |
|    |              | 以下空白                          |      |      |                       |                    |       |                           |    |                    |                           |      |      |          |
|    |              | 以下空白                          |      |      |                       |                    |       |                           |    |                    |                           |      |      |          |
| 场情 | <b></b> 祝描述: | L                             |      |      |                       |                    | 备注:   |                           |    |                    |                           |      |      |          |
|    |              |                               |      |      |                       |                    |       | 玻璃瓶 4、7                   |    | 袋; 5、PVC<br>C 室温干燥 | 土壌样品袋; 6、其他材质;<br>D 避光冷藏  |      |      |          |
| 采  | # 那 萬一       | 元 美教主                         |      |      |                       |                    | 校核: 副 | 3 夏二                      | 3- | 1                  | #K. Jakortil              | 第 2  | 页 共  | 2 页      |

琳 事 直元 多处益

单位名称: 茂名天保再生资源发展有限公司

\_GDZK-JS.2-075-2

\_broas

#### 样品交接领用登记表

任 务单编号: 20231226005

| T    |               | 在分字编号: 2023122000                        |                              |       | 以及代刊版公司 | <b>事</b> : 戊石大体丹土页荷 | - 12. 43 46 |
|------|---------------|------------------------------------------|------------------------------|-------|---------|---------------------|-------------|
|      | 接样人员填写        |                                          | 英写                           | 交样人员均 |         |                     |             |
| 备注   | 记录及样品<br>是否完好 | 分析项目                                     | 样品保存方式                       | 样品数量  | 样品类型    | 样品编号                | 序号          |
|      | □ 是 □ 否       |                                          | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 | P     |         | 5001                | 1           |
| 迎幼平约 | □是□否          |                                          | ☑密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 | 9     |         | 4001a               | 2           |
| ,    | 口是口否          |                                          | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 | 9     |         | 5002                | 3           |
|      | D是 口 香        | 铜、铅、汞、镉、镍、砷、铬<br>、锑、锰、锌、锡、苯系物(           | ☑密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 | 9     | 土壤      | 5003                | F           |
|      | 口是 口 否        | 苯、甲苯、二甲苯、乙苯、苯<br>乙烯)、多环芳烃(苊烯、苊           | ☑密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 | 9     |         | Suok                | 5           |
|      | <b>D</b> 是口否  | 、                                        | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 | 9     |         | 4004                | 6           |
|      | 卫是口否          | 、苯并[k]荧蒽、䓛、二苯并<br>[a, h]蒽、茚并[1, 2, 3-cd] | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 | 9     |         | 6006                | 7           |
|      | □是□否          | 在)、邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸丁基苄基酯            | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 |       |         | 以不定位                |             |
|      | □是□否          | 、邻苯二甲酸二正辛酯、石油<br>烃(C10-C40)、氟化物、水分       | □密封冷蔵 □ 密封干燥<br>□密封室温 □ 特殊保存 |       |         |                     |             |
|      | 口是口否          |                                          | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 |       |         |                     |             |
|      | 口是口否          |                                          | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 |       |         |                     |             |
|      | 口是口否          |                                          | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存 |       |         |                     |             |

文粹人时间: 2023.12.29 接样人时间: 12.20 编用人时间: 12.20 编用 2023.12.30 第1 页共 1页

受测单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林坰268号大院 采样依据: ☑HJ/T166-2004 ☑HJ25.1-2019 ☑HJ25.2-2019 ☑HJ1019-2019 ☑GB36600-2018

采样日期: 2023, 12、4任务单编号: 20231226005

|    | 情况描述: 容器材质: 1、聚四氟乙 | 烯-硅胶衬垫螺旋盖的40。 | nl棕色玻璃瓶; 2 | . 60nl# | 宗色玻璃瓶          | : 3, 250           | 备注:  | 玻璃瓶 4、布             | 5质土壤样品: | 後: 5、PVC                          | 土壤拌品袋; 6、其他材质:       |      |          |          |
|----|--------------------|---------------|------------|---------|----------------|--------------------|------|---------------------|---------|-----------------------------------|----------------------|------|----------|----------|
|    |                    | WPED          |            |         |                |                    |      |                     |         |                                   |                      |      |          |          |
|    |                    | 以下空白          |            | 1       |                |                    |      |                     |         |                                   | 水分                   | 2    | В        |          |
| ı  | 宝钱序空仓              | /             | KB00 ]     | 2       | /              | /                  | /    | /                   | /       |                                   | 苯系物(苯、甲苯、二甲苯、乙苯、苯乙烯) | 1    | D        |          |
|    |                    |               |            | 2       |                |                    |      |                     |         |                                   | 茶系物 (茶 田茶 一田         | 1    | Α        |          |
| 序号 | 采样点名称              | 经纬度坐标         | 样品编号       | 样品数量    | 间<br>(时,<br>分) | 采样斯<br>面深度<br>(cm) | 土壤颜色 | 干/潮/湿<br>/重潮/极<br>潮 | 无根系/少   | 砂土/砂壌土<br>/轻壌土/中<br>壌土/重壌土<br>/粘土 | 檢測项目                 | 容器材质 | 现场<br>处理 | 采样点。功能用证 |

broas

#### 土壤采样原始记录表

GDZK-JS. 2-028-4

受測单位: 茂名天保再生资源发展有限公司 单位地址: 茂名市茂南区公馆镇荔枝塘枫林垌268号大院 采样依据: ②HJ/T166-2004 ②HJ25.1-2019 ②HJ25.2-2019 ②HJ1019-2019 ②GB36600-2018

采样日期: 🎾 🎉 、 / ス・ 🏏 任务単編号: 20231226005

| 序号   | 采样点名称 | 经纬度坐标 | 样品编号  | 样品数量 | 采样时<br>间<br>(时,<br>分) | 采样断<br>面深度<br>(cm) | 1-100%石 | 根系/砂砾 无根系/少量/中量/多量/密集 | 砂土/砂壤土 | 检测项目         | 容器材质 | 现场处理 | 采样点!<br>功能用i |
|------|-------|-------|-------|------|-----------------------|--------------------|---------|-----------------------|--------|--------------|------|------|--------------|
|      |       |       |       | 2    |                       |                    |         |                       |        | 苯系物 (苯、甲苯、二甲 | 1    | Α    |              |
| ı jê | 輔空白   |       | 18002 | 2    | /                     | /                  | /       |                       |        | 苯、乙苯、苯乙烯)    | 1    | D    | _            |
|      |       |       |       | 1    |                       |                    |         |                       |        | 水分           | 2    | В    |              |
| -    |       | 以下空白  |       |      |                       |                    |         |                       |        |              |      |      |              |
| 场情况  | 兄描述:  |       |       |      |                       |                    | 备注:     |                       |        |              |      |      |              |

現场处理: A PR版 0 中心 是 是 是 是 是 是

概》 直元 職 其加州

#### 样品交接领用登记表

单位名称:茂名天保再生资源发展有限公司

任 务单编号: 20231226005

|    |        |      | 交样人员填 | [写                              |                | 接样人员填写        |       |
|----|--------|------|-------|---------------------------------|----------------|---------------|-------|
| 序号 | 样品编号   | 样品类型 | 样品数量  | 样品保存方式                          | 分析项目           | 记录及样品<br>是否完好 | 备注    |
| 1  | KB001  | 土壤   | 5     | 図密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    | 苯系物 (苯、甲苯、二甲苯、 | 口是 口 否        | 全程序空白 |
| 2  | KB 002 | 土壤   | 5     | ☑密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    | 乙苯、苯乙烯)、水分     | 2 是口否         | 运输空白  |
|    | 以下空白   |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | 口是口否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | 口是口否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | 口是口否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | □是□否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | 口是口否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | □ 是 □ 否       |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | □是□否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | □是□否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥<br>□密封室温 □ 特殊保存    |                | □是□否          |       |
|    |        |      |       | □密封冷藏 □ 密封干燥 □密封室温 □ 特殊保存 領用人/时 |                | □是□否          |       |

### 8.4 2023 年土壤和地下水检测报告

#### 8.4.1 2023 年土壤和地下水检测报告

# Stt



# 检测报告

#### **TEST REPORT**

报告编号 GDZKBG20231226005 第 1 页 共 14 页 Report No. Page of 委托单位 茂名天保再生资源发展有限公司 Client 项目名称 茂名天保再生资源发展有限公司 2023 年土壤和地下水自行监测 Name 地址 茂名市茂南区公馆镇荔枝塘枫林垌 268 号大院 Address 检测类别 委托检测 Type

编

朱1.

核:

att 16

Compiled by

H IN

南南

Inspected by

效

And St.

Approved by

签发日期:

204年0月15日

Approved Date

Y M I

报告日期: Report Date 2024年01月15日 Y M D

第 2 页共 14 页 Page of

# 说 明 Introduction

1. 本报告无广东中科检测技术股份有限公司检测专用章、无 CMA 资质章和骑缝章无效。 This report has no Guangdong Sino-Sci Testing Technology Corporation Limited testing special chapter, no CMA qualification chapter and riding seam invalid.

2. 本报告不得涂改、增删。

This report shall not be altered, added and deleted.

3. 本报告只对当时采样/送检样品检测结果负责。

This report is solely responsible for the results of the samples taken / submitted for testing at the time.

4. 本报告未经同意不得作为商业广告使用。

This report shall not be published as advertisement without the approval of STT

5. 未经广东中科检测技术股份有限公司书面批准,不得部分复制检测报告。

This report shall not be copied partly without the written approval of Guangdong Sino-Sci Testing Technology Corporation Limited.

6. 对本报告有疑议,请在收到报告 10 天之内与本公司联系,逾期不予受理。

Please contact with us within 10 days after you received this report if you have any questions with it, Overdue will not be accepted.

- 7. 除客户特别申明并支付样品管理费,所有超过标准规定时效期的样品均不再做留样。 All expired samples which exceed standard time limited will not be remained, unless clients have special declaration with payment.
- 8. 委托检测结果只代表检测时污染物排放状况,所附排放限值由客户提供。

The test results only represent the pollutant emissions of sampling. The discharge standard is provided by the client.

9. 除客户特别申明并支付档案管理费,本次检测的所有记录档案保存期限为六年。

All of the testing records would be kept for six years unless the customer declares and pays administration fee in advance.

感谢您选择我公司,如有任何建议或意见,欢迎致电客服热线,我们将竭诚为您服务! Thank you for choosing our company. If you have any suggestions or opinions, please call the customer service hotline. We will serve you wholeheartedly!

客服热线: 0755-33525448

传真: 0755-26059850

Hotline:

Fax:

邮编: 518126

网址: www.sttgdzk.com

Postal Code:

Weh.

单位地址:深圳市宝安区西乡街道固戍东方建富愉盛工业区 12 栋 7 楼东

Address: The East of 7th Floor, Building NO.12, Dongfang Jianfu Yusheng Industrial Area, Gushu, Xixiang Sub-district, Baoan District, Shenzhen, P.R.C



第 3 页 共 14 页 Page of

一、检测基本信息

| 样品来源  | 样品类别        | 采样日期              | 检测/分析日期      |
|-------|-------------|-------------------|--------------|
| 77 IV | 地下水         | 2022 /T 12 H 20 H | 2023年12月30日  |
| 采样    | 土壤          | 2023年12月29日       | ~2024年01月12日 |
| 采样人员  | 王震、洪世海、邓盛岳、 | 李权全               |              |
| 分析人员  | 白雪丽、黄雨蝶、唐嘉仪 | 、田孟怡、吴欣兰、陈诗林、刘    | 川晓红、姚雨晴、张纯   |
| 其他说明  | 1           |                   |              |

#### 二、检测项目、检测方法与检测仪器

| 检测类别 | 检测项目            | 检测方法                                             | 检测仪器                | 检出限     | 单位   |
|------|-----------------|--------------------------------------------------|---------------------|---------|------|
|      | 氟化物             | GB/T 7484-1987<br>《水质 氟化物的测定 离子选择电极法》            | PXSJ-216F<br>离子计    | 0.05    | mg/L |
|      | 高锰酸盐指<br>数(耗氧量) | GB/T 5750.7-2023 (4.1) 《生活饮用水标准<br>检验方法 有机物综合指标》 | _                   | 0.05    | mg/L |
|      | 氨氮              | HJ 535-2009<br>《水质 氨氮的测定 纳氏试剂分光光度法》              | T6 新世纪<br>紫外可见分光光度计 | 0.025   | mg/L |
|      | 砷               | HJ 694-2014<br>《水质 汞、砷、硒、铋和锑的测定 原子荧              | AFS-230E            | 0.0003  | mg/L |
|      | 汞               | 光法》                                              | 双道原子荧光光度计           | 0.00004 | mg/L |
|      | 铅               |                                                  |                     | 0.00009 | mg/L |
| 地工人  | 镉               |                                                  |                     | 0.00005 | mg/L |
| 地下水  | 铜               |                                                  |                     | 0.00008 | mg/L |
|      | 铬               | 111700 2014                                      | ICAP RQ             | 0.00011 | mg/L |
|      | 镍               | HJ 700-2014<br>《水质 65 种元素的测定 电感耦合等离子<br>体质谱法》    | 电感耦合等离子体<br>质谱仪     | 0.00006 | mg/L |
|      | 锡               | 門內相14//                                          | /X II IX            | 0.00008 | mg/L |
|      | 锑               |                                                  |                     | 0.00015 | mg/L |
|      | 锰               |                                                  |                     | 0.00012 | mg/L |
|      | 锌               |                                                  |                     | 0.00067 | mg/L |



第 4 页 共 14 页 Page of

接上表:

| 样品类别 | 枚    | <b>检测项目</b>                         | 检测方法                                                                        | 检测仪器                    | 检出限                  | 单位   |
|------|------|-------------------------------------|-----------------------------------------------------------------------------|-------------------------|----------------------|------|
|      |      | 苯                                   |                                                                             |                         | 1.4                  | μg/L |
|      |      | 甲苯                                  |                                                                             |                         | 1.4                  | μg/L |
|      | 二甲苯  | 间,对-二甲苯                             | HJ 639-2012                                                                 | GCMS-QP2010<br>SE       | 2.2                  | μg/L |
|      | 一十本  | 邻-二甲苯                               | 《水质 挥发性有机物的测定 吹扫<br>捕集/气相色谱-质谱法》                                            | 气相色谱质谱<br>联用仪           | 1.4                  | μg/L |
|      |      | 乙苯                                  |                                                                             | 7071702                 | 0.8                  | μg/L |
|      |      | 苯乙烯                                 |                                                                             |                         | 0.6                  | μg/L |
|      | 10   | 萘                                   |                                                                             |                         | 0.012                | μg/L |
|      |      | 苊                                   |                                                                             |                         | 0.005                | μg/L |
|      |      | 芴                                   |                                                                             |                         | 0.013                | μg/L |
|      |      | 苊烯                                  |                                                                             |                         | 0.008                | μg/L |
|      |      | 菲                                   |                                                                             |                         | 0.012                | μg/L |
|      |      | 蒽                                   |                                                                             |                         | 0.004                | μg/L |
|      |      | 荧蒽                                  |                                                                             |                         | 0.005                | μg/L |
|      |      | 芘                                   | HJ 478-2009<br>《水质 多环芳烃的测定 液液萃取                                             | LC U3000                | 0.016                | μg/L |
| 地下水  | 苯    | 并[a]蒽                               | 和固相萃取高效液相色谱法》                                                               | 液相色谱仪                   | 0.012                | μg/L |
|      |      | 苗                                   |                                                                             |                         | 0.005                | μg/L |
|      | 苯并   | 并[b]荧蒽                              |                                                                             |                         | 0.004                | μg/L |
|      | 苯    | 并[k]荧蒽                              |                                                                             |                         | 0.004                | μg/L |
|      | 苯    | 并[a]芘                               |                                                                             |                         | 0.004                | μg/L |
|      | 二苯   | 并[a,h]蒽                             |                                                                             |                         | 0.003                | μg/L |
|      | 苯并 ( | g, h, i) 菲                          |                                                                             |                         | 0.005                | μg/L |
|      | 茚并[  | 1,2,3-cd]芘                          |                                                                             |                         | 0.005                | μg/L |
|      | 邻苯二甲 | 甲酸丁基苄基<br>酯 <sup>α</sup>            | GB/T 5750.8-2023<br>《生活饮用水标准检验方法 第 8 部<br>分:有机物指标》附录 B                      | GCMS-QP2010<br>与HA.她 医她 | 2.5×10 <sup>-4</sup> | mg/L |
|      |      | 甲酸二(2-乙基<br>L基)酯 <sup>a</sup>       | GB/T 5750.8-2023 (15.1)<br>《生活饮用水标准检验方法 第8部<br>分:有机物指标》                     | 气相色谱-质谱<br>联用仪          | 0.41                 | μg/L |
|      | 邻苯二  | 甲酸二辛酯                               | HJ/T 72-2001 《水质邻苯二甲酸二甲<br>(二丁、二辛)酯的测定液相色谱法》                                | LC U3000<br>液相色谱仪       | 0.2                  | μg/L |
|      | 石油烃  | (C <sub>10</sub> -C <sub>40</sub> ) | HJ 894-2017<br>《水质 可萃取性石油烃(C <sub>10</sub> -C <sub>40</sub> )<br>的测定 气相色谱法》 | GC9720Plus<br>气相色谱仪     | 0.01                 | mg/L |



页 共 14 页 Page of

| 接上   | 表: |         |                                            |                             |        |       |
|------|----|---------|--------------------------------------------|-----------------------------|--------|-------|
| 样品类别 |    | 检测项目    | 检测方法                                       | 检测仪器                        | 检出限    | 单位    |
|      |    | 氟化物     | GB/T 22104-2008 《土壤质量 氟化物的测定 离子选择电极法》      | PXSJ-216F<br>离子计            | 2.5    | μg    |
|      |    | 砷       | HJ 680-2013<br>《土壤和沉积物汞、砷、硒、铋、             | AFS-230E                    | 0.01   | mg/kg |
|      |    | 汞       | 梯的测定 微波消解/原子荧光法》                           | 双道原子荧光光度计                   | 0.002  | mg/k  |
|      |    | 铅       | GB/T 17141-1997<br>《土壤质量 铅、镉的测定 石墨         | TAS-990AFG                  | 0.1    | mg/k  |
| 土壤   |    | 镉       | 炉原子吸收分光光度法》                                | 原子吸收分光光度计                   | 0.01   | mg/k  |
|      |    | 铬       |                                            |                             | 4      | mg/k  |
|      |    | 锌       | HJ 491-2019<br>《土壤和沉积物 铜、锌、铅、镍、            | TAS-990AFG                  | 1      | mg/k  |
|      |    | 铜       | 铬的测定火焰原子吸收分光光度<br>法》                       | 原子吸收分光光度计                   | 1      | mg/k  |
|      |    | 镍       |                                            | 3                           | mg/k   |       |
| 土壌   |    | 锰       | HJ 803-2016<br>《土壤和沉积物 12 种金属元素            | ICAP RQ<br>电感耦合等离子体         | 0.7    | mg/k  |
|      |    | 锑       | 的测定 王水提取-电感耦合等离<br>子体质谱法》                  | 质谱仪                         | 0.3    | mg/k  |
|      |    | 锡α      | JY/T 0567-2020<br>《电感耦合等离子体发射光谱分<br>析方法通则》 | 2100DV<br>电感耦合等离子体<br>发射光谱仪 | 4      | mg/k  |
|      |    | 苯       |                                            |                             | 0.0019 | mg/k  |
|      |    | 甲苯      |                                            |                             | 0.0013 | mg/k  |
|      | =  | 间,对-二甲苯 | HJ 605-2011<br>《土壤和沉积物 挥发性有机物              | GCMS-QP2010SE<br>气相色谱质谱联用   | 0.0012 | mg/k  |
|      | 甲苯 | 邻-二甲苯   | 的测定 吹扫捕集/气相色谱-质谱<br>法》                     | 仪                           | 0.0012 | mg/k  |
|      |    | 乙苯      |                                            |                             | 0.0012 | mg/k  |
|      |    | 苯乙烯     |                                            |                             | 0.0011 | mg/k  |



第 6 页 共 14 页 Page of

接上表:

| 样品类别 | 检测项目                | 检测方法                                       | 检测仪器                            | 检出限   | 单位    |
|------|---------------------|--------------------------------------------|---------------------------------|-------|-------|
|      | 苊烯                  |                                            |                                 | 0.09  | mg/kg |
|      | 苊                   |                                            |                                 |       |       |
|      | 芴                   |                                            |                                 | 0.08  | mg/kg |
|      | 菲                   |                                            |                                 | 0.1   | mg/kg |
|      | 蒽                   |                                            |                                 | 0.1   | mg/kg |
|      |                     |                                            |                                 | 0.2   | mg/kg |
|      |                     |                                            |                                 | 0.1   | mg/kg |
|      |                     |                                            |                                 | 0.1   | mg/kg |
| 土壤   | 苯并[a]蒽              |                                            |                                 | 0.1   | mg/kg |
|      | 苯并[a]芘              |                                            | TRACE1300/ISQ7000<br>气相色谱-质谱联用仪 | 0.1   | mg/kg |
|      | 苯并[b]荧蒽             |                                            |                                 | 0.2   | mg/kg |
|      | 苯并[k]荧蒽             |                                            |                                 | 0.1   | mg/kg |
|      | 崫                   |                                            |                                 | 0.1   | mg/kg |
|      | 二苯并[a,h]蒽           |                                            |                                 | 0.1   | mg/kg |
|      | 茚并[1,2,3-cd]芘       |                                            |                                 | 0.1   | mg/kg |
|      | 萘                   |                                            |                                 | 0.09  | mg/kg |
|      | 邻苯二甲酸二正辛酯           |                                            |                                 | 0.2   | mg/kg |
|      | 邻苯二甲酸二(2-乙基<br>己基)酯 |                                            |                                 | 0.1   | mg/kg |
|      | 邻苯二甲酸丁基苄酯           |                                            |                                 | 0.2   | mg/kg |
|      | 石油烃 (C10-C40)       | HJ 1021-2019 《土壤和沉积物 石油烃(C10-C40)的测定气相色谱法》 | GC9720Plus<br>气相色谱仪             | 6     | mg/kg |
| 备注   | ""表示该项目为分包项         | [目,分包至(资质编号: 202319122                     | 2787) 深圳市惠利权环均                  | 竟检测有网 | 艮公司。  |



#### 三、检测结果

#### 地下水

|             |                                        | 检测结果(采样                                | 日期: 2023.12.29)                        |                                         |        |      |
|-------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|--------|------|
| 检测项目        | W1<br>(E 110.822055°, N<br>21.690051°) | W2<br>(E 110.822335°, N<br>21.690333°) | W3<br>(E 110.822993°, N<br>21.690428°) | BJ1<br>(E 110.824188°, N<br>21.688693°) | 参考限值   | 单位   |
| 感官状态描述      | 灰、无气味、浊                                | 黄、无气味、浊                                | 黄、无气味、浊                                | 黄、无气味、浊                                 | -      | _    |
| 氟化物         | 0.28                                   | 0.29                                   | 0.26                                   | 0.27                                    | ≤1.0   | mg/L |
| 高锰酸盐指数(耗氧量) | 2.30                                   | 2.12                                   | 1.97                                   | 2.06                                    | ≤3.0   | mg/L |
| 氨氮          | 0.185                                  | 0.139                                  | 0.167                                  | 0.129                                   | ≤0.50  | mg/L |
| 砷           | 0.0003L                                | 0.0003L                                | 0.0003L                                | 0.0003L                                 | ≤0.01  | mg/L |
| 汞           | 0.00004L                               | 0.00004L                               | 0.00004L                               | 0.00004L                                | ≤0.001 | mg/L |
| 铅           | 0.00021                                | 0.00036                                | 0.00009L                               | 0.00247                                 | ≤0.01  | mg/L |
| 镉           | 0.00005L                               | 0.00005L                               | 0.00005L                               | 0.00087                                 | ≤0.005 | mg/L |
| 铜           | 0.00071                                | 0.00161                                | 0.00257                                | 0.00033                                 | ≤1.00  | mg/L |
| 铬           | 0.00012                                | 0.00036                                | 0.00011L                               | 0.00131                                 | _      | mg/L |
| 镍           | 0.00006L                               | 0.00006L                               | 0.00006L                               | 0.00006L                                | ≤0.02  | mg/L |
| 锡           | 0.00008L                               | 0.00015                                | 0.00008L                               | 0.0305                                  | _      | mg/L |
| 锑           | 0.00026                                | 0.00066                                | 0.00014                                | 0.00175                                 | ≤0.005 | mg/L |
| 锰           | 0.00223                                | 0.0239                                 | 0.0530                                 | 0.0145                                  | ≤0.10  | mg/L |
| 锌           | 0.00227                                | 0.00800                                | 0.0112                                 | 0.0229                                  | ≤1.00  | mg/L |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited

报告编号: GDZKBG20231226005 Report No.

第 8 页 共 14 页 Page of



接上表

|      |         |                                        | 检测结果(采样                                | 日期: 2023.12.29)                        |                                         |       |      |
|------|---------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|-------|------|
| 33   | 检测项目    | W1<br>(E 110.822055°, N<br>21.690051°) | W2<br>(E 110.822335°, N<br>21.690333°) | W3<br>(E 110.822993°, N<br>21.690428°) | BJ1<br>(E 110.824188°, N<br>21.688693°) | 参考限值  | 单位   |
|      | 苯       | 1.4L                                   | 1.4L                                   | 1.4L                                   | 1.4L                                    | ≤10.0 | μg/L |
|      | 甲苯      | 1.4L                                   | 1.4L                                   | 1.4L                                   | 1.4L                                    | ≤700  | μg/L |
| 二甲苯  | 间,对-二甲苯 | 2.2L                                   | 2.2L                                   | 2.2L                                   | 2.2L                                    |       |      |
| -1 4 | 邻-二甲苯   | 1.4L                                   | 1.4L                                   | 1.4L                                   | 1.4L                                    | ≤500  | μg/L |
|      | 乙苯      | 0.8L                                   | 0.8L                                   | 0.8L                                   | 0.8L                                    | ≤300  | μg/L |
|      | 苯乙烯     | 0.6L                                   | 0.6L                                   | 0.6L                                   | 0.6L                                    | ≤20.0 | μg/L |
|      | 萘       | 0.012L                                 | 0.012L                                 | 0.012L                                 | 0.012L                                  | ≤100  | μg/L |
|      | 苊       | 0.005L                                 | 0.005L                                 | 0.005L                                 | 0.005L                                  | _     | μg/L |
|      | 芴       | 0.013L                                 | 0.013L                                 | 0.013L                                 | 0.013L                                  |       | μg/L |
|      | 苊烯      | 0.008L                                 | 0.008L                                 | 0.008L                                 | 0.008L                                  |       | μg/L |
|      | 菲       | 0.012L                                 | 0.012L                                 | 0.012L                                 | 0.012L                                  |       | μg/L |
|      | 蔥       | 0.004L                                 | 0.004L                                 | 0.004L                                 | 0.004L                                  | ≤1800 | μg/L |
|      | 荧蒽      | 0.005L                                 | 0.005L                                 | 0.005L                                 | 0.005L                                  | ≤240  | μg/L |
|      | 芘       | 0.016L                                 | 0.016L                                 | 0.016L                                 | 0.016L                                  |       | μg/L |
| 3    | 苯并[a]蒽  | 0.012L                                 | 0.012L                                 | 0.012L                                 | 0.012L                                  | _     | μg/L |
|      | 苽       | 0.005L                                 | 0.005L                                 | 0.005L                                 | 0.005L                                  | _     | μg/L |
| 苯    | 并[b]荧蒽  | 0.004L                                 | 0.004L                                 | 0.004L                                 | 0.004L                                  | ≤4.0  | μg/L |



第 9 页 共 14 页 Page of



|                                  | 检测结果(采样日期: 2023.12.29) W1 W2 W3 BII    |                                        |                                                          |                                         |       |      |
|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------|-------|------|
| 检测项目                             | W1<br>(E 110.822055°, N<br>21.690051°) | W2<br>(E 110.822335°, N<br>21.690333°) | W3<br>(E 110.822993°, N<br>21.690428°)                   | BJ1<br>(E 110.824188°, N<br>21.688693°) | 参考限值  | 单位   |
| 苯并[k]荧蒽                          | 0.004L                                 | 0.004L                                 | 0.004L                                                   | 0.004L                                  | _     | μg/L |
| 苯并[a]芘                           | 0.004L                                 | 0.004L                                 | 0.004L                                                   | 0.004L                                  | ≤0.01 | μg/L |
| 二苯并[a,h]蒽                        | 0.003L                                 | 0.003L                                 | 0.003L                                                   | 0.003L                                  | _     | μg/L |
| 苯并 (g, h, i) 芘                   | 0.005L                                 | 0.005L                                 | 0.005L                                                   | 0.005L                                  |       | μg/L |
| 茚并[1,2,3-cd]芘                    | 0.005L                                 | 0.005L                                 | 0.005L                                                   | 0.005L                                  | _     | μg/L |
| 邻苯二甲酸二辛酯                         | 0.2L                                   | 0.2L                                   | 0.2L                                                     | 0.2L                                    |       | μg/L |
| 石油烃 (C10-C40)                    | 0.36                                   | 0.22                                   | 0.23                                                     | 0.01L                                   | _     | mg/L |
| 邻苯二甲酸丁基苄基酯 <sup>α</sup>          | 2.5×10 <sup>-4</sup> L                 | 2.5×10 <sup>-4</sup> L                 | 2.5×10 <sup>-4</sup> L                                   | 2.5×10 <sup>-4</sup> L                  |       | mg/L |
| 邻苯二甲酸二(2-乙基己基)<br>酯 <sup>α</sup> | 0.41L                                  | 0.41L                                  | 0.41L                                                    | 0.41L                                   | ≤8.0  | μg/L |
| 备注                               | 2.参考限值由客户提供,参                          |                                        | 无该项限值或不适用;<br>3 14848-2017) Ⅲ类限值;<br>:19122787) 深圳市惠利权环: | 境检测有限公司。                                |       |      |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited

报告编号: GDZKBG20231226005 Report No.

第 10 页 共 14 页 Page of



土壤

|              |                                | 上坡                             |                                |       |       |
|--------------|--------------------------------|--------------------------------|--------------------------------|-------|-------|
| 检测项目         | 检测结果(2023.12.29)               |                                |                                |       |       |
|              | TI (E110.823053°, N21.689033°) | T2 (E110.822322°, N21.689850°) | T3 (E110.822369°, N21.690418°) | 参考限值  | 单位    |
| 重金属等采样断面深度   | 0-20                           | 0-20                           | 0-20                           | _     | cm    |
| 军发性有机物采样断面深度 | 5                              | 8                              | 8                              |       | cm    |
| 氟化物          | 658                            | 711                            | 849                            |       | mg/kg |
| 砷            | 3.40                           | 3.03                           | 3.55                           | 60    | mg/kg |
| 汞            | 0.062                          | 0.058                          | 0.048                          | 38    | mg/kg |
| 铅            | 55.4                           | 19.3                           | 83.0                           | 800   | mg/kg |
| 镉            | 0.17                           | 0.24                           | 0.18                           | 65    | mg/kg |
| 铬            | 20                             | 22                             | 20                             | 7     | mg/kg |
| 锌            | 90                             | 72                             | 76                             |       | mg/kg |
| 铜            | 7                              | 5                              | 5                              | 18000 | mg/kg |
| 镍            | 16                             | 17                             | 13                             | 900   | mg/kg |
| 锰            | 245                            | 157                            | 22.8                           |       | mg/kg |
| 锑            | 0.3L                           | 0.3L                           | 0.3L                           | 180   | mg/kg |
| 锡α           | 32                             | 27                             | 29                             |       | mg/kg |
| 苯            | 0.0019L                        | 0.0019L                        | 0.0019L                        | 4     | mg/kg |
| 乙苯           | 0.0012L                        | 0.0012L                        | 0.0012L                        | 28    | mg/kg |
| 苯乙烯          | 0.0011L                        | 0.0011L                        | 0.0011L                        | 1290  | mg/kg |
| 甲苯           | 0.0013L                        | 0.0013L                        | 0.0013L                        | 1200  | mg/kg |
| 间,对-二甲苯      | 0.0012L                        | 0.0012L                        | 0.0012L                        | 570   | mg/kg |
| 邻-二甲苯        | 0.0012L                        | 0.0012L                        | 0.0012L                        | 640   | mg/kg |



第 11 页 共 14 页 Page of



| 接上表:             | 1                              |                                |                                |              |        |
|------------------|--------------------------------|--------------------------------|--------------------------------|--------------|--------|
| 检测项目             | 检测结果(2023.12.29)               |                                |                                | do de ma tie | 34.13. |
|                  | T1 (E110.823053°, N21.689033°) | T2 (E110.822322°, N21.689850°) | T3 (E110.822369°, N21.690418°) | 参考限值         | 单位     |
| 苯并[a]蒽           | 0.1L                           | 0.1L                           | 0.1L                           | 15           | mg/kg  |
| 苯并[a]芘           | 0.1L                           | 0.1L                           | 0.1L                           | 1.5          | mg/kg  |
| 苯并[b]荧蒽          | 0.2L                           | 0.2L                           | 0.2L                           | 15           | mg/kg  |
| 苯并[k]荧蒽          | 0.1L                           | 0.1L                           | 0.1L                           | 151          | mg/kg  |
| 苽                | 0.1L                           | 0.1L                           | 0.1L                           | 1293         | mg/kg  |
| 二苯并[a,h]蒽        | 0.1L                           | 0.1L                           | 0.1L                           | 1.5          | mg/kg  |
| 茚并[1,2,3-cd]芘    | 0.1L                           | 0.1L                           | 0.1L                           | 15           | mg/kg  |
| 萘                | 0.09L                          | 0.09L                          | 0.09L                          | 70           | mg/kg  |
| 苊烯               | 0.09L                          | 0.09L                          | 0.09L                          | _            | mg/kg  |
| 苊                | 0.1L                           | 0.1L                           | 0.1L                           | _            | mg/kg  |
| 芴                | 0.08L                          | 0.08L                          | 0.08L                          | _            | mg/kg  |
| 菲                | 0.1L                           | 0.1L                           | 0.1L                           |              | mg/kg  |
| 蒽                | 0.1L                           | 0.1L                           | 0.1L                           |              | mg/kg  |
| 荧蔥               | 0.2L                           | 0.2L                           | 0.2L                           |              | mg/kg  |
| 芘                | 0.1L                           | 0.1L                           | 0.1L                           | _            | mg/kg  |
| 苯并 (g, h, i) 芘   | 0.1L                           | 0.1L                           | 0.1L                           |              | mg/kg  |
| 邻苯二甲酸二(2-乙基己基) 酯 | 0.1L                           | 0.1L                           | 0.1L                           | 121          | mg/kg  |
| 邻苯二甲酸丁基苄酯        | 0.2L                           | 0.2L                           | 0.2L                           | 900          | mg/kg  |
| 邻苯二甲酸二正辛酯        | 0.2L                           | 0.2L                           | 0.2L                           | 2812         | mg/kg  |
| 石油烃 (C10-C40)    | 104                            | 58                             | 78                             | 4500         | mg/kg  |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited

报告编号: GDZKBG20231226005 Report No. 第 12 页 共 14 页 Page of



| 检测项目         | 检测结果(2023.12.29)               |                                |                                | LACT. | Total Control |
|--------------|--------------------------------|--------------------------------|--------------------------------|-------|---------------|
|              | T4 (E110.823875°, N21.689312°) | T5 (E110.823166°, N21.690612°) | T6 (E110.823841°, N21.690276°) | 参考限值  | 单位            |
| 重金属等采样断面深度   | 0-20                           | 0-20                           | 0-20                           |       | cm            |
| 挥发性有机物采样断面深度 | 10                             | 10                             | 12                             |       | cm            |
| 氟化物          | 888                            | 743                            | 812                            | 0.000 | mg/kg         |
| 砷            | 6.04                           | 9.95                           | 8.50                           | 60    | mg/kg         |
| 汞            | 0.080                          | 0.316                          | 0.147                          | 38    | mg/kg         |
| 铅            | 279                            | 26.1                           | 37.8                           | 800   | mg/kg         |
| 镉            | 0.41                           | 0.27                           | 0.31                           | 65    | mg/kg         |
| 铬            | 32                             | 37                             | 36                             | -     | mg/kg         |
| 锌            | 288                            | 118                            | 269                            | _     | mg/kg         |
| 铜            | 35                             | 18                             | 26                             | 18000 | mg/kg         |
| 镍            | 25                             | 26                             | 28                             | 900   | mg/kg         |
| 锰            | 23.8                           | 91.9                           | 185                            | _     | mg/kg         |
| 锑            | 0.3L                           | 0.3L                           | 0.3L                           | 180   | mg/kg         |
| 锡a           | 23                             | 20                             | 17                             | _     | mg/kg         |
| 苯            | 0.0019L                        | 0.0019L                        | 0.0019L                        | 4     | mg/kg         |
| 乙苯           | 0.0012L                        | 0.0012L                        | 0.0012L                        | 28    | mg/kg         |
| 苯乙烯          | 0.0011L                        | 0.0011L                        | 0.0011L                        | 1290  | mg/kg         |
| 甲苯           | 0.0013L                        | 0.0013L                        | 0.0013L                        | 1200  | mg/kg         |
| 间,对-二甲苯      | 0.0012L                        | 0.0012L                        | 0.0012L                        | 570   | mg/kg         |
| 邻-二甲苯        | 0.0012L                        | 0.0012L                        | 0.0012L                        | 640   | mg/kg         |



| 检测项目            | 检测结果(2023.12.29)               |                                                                      |                                | 46 da ma 66 |       |
|-----------------|--------------------------------|----------------------------------------------------------------------|--------------------------------|-------------|-------|
|                 | T4 (E110.823875°, N21.689312°) | T5 (E110.823166°, N21.690612°)                                       | T6 (E110.823841°, N21.690276°) | 参考限值        | 单位    |
| 苯并[a]蒽          | 0.1L                           | 0.1L                                                                 | 0.1L                           | 15          | mg/kg |
| 苯并[a]芘          | 0.1L                           | 0.1L                                                                 | 0.1L                           | 1.5         | mg/kg |
| 苯并[b]荧蒽         | 0.2L                           | 0.2L                                                                 | 0.2L                           | 15          | mg/kg |
| 苯并[k]荧蒽         | 0.1L                           | 0.1L                                                                 | 0.1L                           | 151         | mg/kg |
| 葅               | 0.1L                           | 0.1L                                                                 | 0.1L                           | 1293        | mg/kg |
| 二苯并[a,h]蒽       | 0.1L                           | 0.1L                                                                 | 0.1L                           | 1.5         | mg/kg |
| 茚并[1,2,3-cd]芘   | 0.1L                           | 0.1L                                                                 | 0.1L                           | 15          | mg/kg |
| 萘               | 0.09L                          | 0.09L                                                                | 0.09L                          | 70          | mg/kg |
| 苊烯              | 0.09L                          | 0.09L                                                                | 0.09L                          | _           | mg/kg |
| 苊               | 0.1L                           | 0.1L                                                                 | 0.1L                           | _           | mg/kg |
| 芴               | 0.08L                          | 0.08L                                                                | 0.08L                          | _           | mg/kg |
| 菲               | 0.1L                           | 0.1L                                                                 | 0.1L                           |             | mg/kg |
| 蔥               | 0.1L                           | 0.1L                                                                 | 0.1L                           | _           | mg/kg |
| 荧蒽              | 0.2L                           | 0.2L                                                                 | 0.2L                           | _           | mg/kg |
| 芘               | 0.1L                           | 0.1L                                                                 | 0.1L                           | _           | mg/kg |
| 苯并 (g, h, i) 芘  | 0.1L                           | 0.1L                                                                 | 0.1L                           | _           | mg/kg |
| 邻苯二甲酸二(2-乙基己基)酯 | 0.1L                           | 0.1L                                                                 | 0.1L                           | 121         | mg/kg |
| 邻苯二甲酸丁基苄酯       | 0.2L                           | 0.2L                                                                 | 0.2L                           | 900         | mg/kg |
| 邻苯二甲酸二正辛酯       | 0.2L                           | 0.2L                                                                 | 0.2L                           | 2812        | mg/kg |
| 石油烃 (C10-C40)   | 42                             | 60                                                                   | 104                            | 4500        | mg/kg |
| 备注              | 2.参考限值由客户提供。参考《土均              | : "——"对应标准中无该项限值或不<br>建环境质量 建设用地土壤污染风险管<br>至(资质编号: 202319122787) 深圳市 | 空标准》(试行)(GB 36600-2018) 3      |             |       |



第 14 页 共 14 页 Page of

检测布点图:



图 1 土壤及地下水监测点位布点图

\*\*\*报告结束\*\*\*

#### 8.4.2 2023 年土壤和地下水分包检测报告



# 深圳市惠利权环境检测有限公司

# 检测报告

报告编号: HLQ20231229 (02) 005

委托单位: 广东中科检测技术股份有限公司

茂名天保再生资源发展有限公司 2023 年土壤和地下水自

项目名称: 行监测

样品类型: 土壤、地下水

检测类别: 送样检测

联系地址;深圳市宝安区沙井街道沙松路 150 号百通科技创新产业园 C 栋 401 号邮政编码; 518104 电话; 0755-27135725 网址: www.hlq-cert.com



报告编号: HLQ20231229 (02) 005

第1页共4页

## 报告说明

#### 一、实验室地址:

深圳市宝安区沙井街道后亭社区第三工业区 45号 4层。

- 二、本公司保证检测的科学性、公正性和准确性,并对委托单位所提供的样品和技术资料保密。
- 三、本报告不得涂改、增删; 无三级审核、签发人签字无效。
- 四、本报告无本公司检测专用章、骑缝章、CMA 章无效。
- 五、未经本公司书面批准,不得部分复制检测报告。
- 六、未经本公司同意,本检测报告不得作为商业广告使用。
- 七、本报告只对本次送样/采样检测结果负责。
- 八、委托检测结果只代表检测时污染物排放状况,报告中所附限值标准由客户提供,仅供参考。
- 九、对本报告有疑议,请在收到报告 10 个工作日内与本公司联系,逾期不予受理。对性能不稳定、不易留样的样品,不受理复检。
- 十、本公司对报告中的信息负责,客户提供的信息除外。





# 深圳市惠利权环境检测有限公司 WWW. HLQ-CERT. COM

报告编号: HLQ20231229 (02) 005

第2页共4页

| 1 122014 15050 |                 |  |
|----------------|-----------------|--|
| 样品来源           | 送样              |  |
| 送样单位           | 广东中科检测技术股份有限公司  |  |
| 送样日期           | 2023年12月30日     |  |
| 分析日期           | 2024年01月03日~11日 |  |

#### 二、检测方法、分析仪器及检出限

| 样品<br>类型 | 检测项目                    | 分析仪器型号                      | 检测方法                                                   | 检出限                       |
|----------|-------------------------|-----------------------------|--------------------------------------------------------|---------------------------|
| 土壤       | 锡                       | 电感耦合等离子体<br>发射光谱仪<br>2100DV | 《电感耦合等离子体发射光谱分析方法<br>通则》 JY/T 0567-2020                | 4 mg/kg                   |
|          | 邻苯二甲酸丁基<br>苄基酯          |                             | 《生活饮用水标准检验方法 第8部分:<br>有机物指标》 GB/T 5750.8-2023 附录 B     | 2.5×10 <sup>-4</sup> mg/L |
| 地下水      | 邻苯二甲酸二<br>(2-乙基己基)<br>酯 | 气相色谱-质谱联用<br>仪 GCMS-QP2010  | 《生活饮用水标准检验方法 第 8 部分:<br>有机物指标》 GB/T 5750.8-2023 (15.1) | 0.41 μg/L                 |

### 三、检测结果

| 样品名称             | 样品编号                   | 样品状态               | 检测项目 | 检测结果 | 单位    |
|------------------|------------------------|--------------------|------|------|-------|
| 20231226005S001  | H20231229005<br>101-01 | 黄棕色、潮、多<br>量根系、砂壤土 | 锡    | 37   | mg/kg |
| 20231226005S001a | H20231229005<br>102-01 | 棕黄色、干、中<br>量根系、砂壌土 | 锡    | 26   | mg/kg |
| 20231226005S002  | H20231229005<br>103-01 | 棕色、潮、多量、<br>轻壤土    | 锡    | 27   | mg/kg |
| 20231226005S003  | H20231229005<br>104-01 | 黄棕色、干、中<br>量根系、砂壤土 | 锡    | 29   | mg/kg |
| 20231226005S004  | H20231229005<br>105-01 | 棕色、干、多量<br>根系、砂壤土  | 锡    | 23   | mg/kg |
| 202312260058005  | H20231229005<br>106-01 | 棕色、干、中量<br>根系、砂壌土  | 锡    | 20   | mg/kg |
| 20231226005S006  | H20231229005<br>107-01 | 黄棕色、潮、多<br>量根系、砂壤土 | 锡    | 17   | mg/kg |
| 说明: 此样品为送样       | ,只对当时送检的               | 样品负责。              |      |      |       |



## 深圳市惠利权环境检测有限公司 WWW. HLQ-CERT. COM

报告编号: HLQ20231229 (02) 005

第3页共4页

#### 2、地下水

| 样品名称             | 样品编号                   | 样品状态    | 检测项目                | 检测结果                   | 单位   |
|------------------|------------------------|---------|---------------------|------------------------|------|
|                  | H20231229005           | 灰色、无气味、 | 邻苯二甲酸丁基<br>苄基酯      | 2.5×10 <sup>-4</sup> L | mg/L |
| 20231226005W001  | 108-01                 | 浑浊      | 邻苯二甲酸二(2-<br>乙基己基)酯 | 4.1×10 <sup>-4</sup> L | mg/L |
| 0                | H20231229005           | 灰色、无气味、 | 邻苯二甲酸丁基<br>苄基酯      | 2.5×10 <sup>-4</sup> L | mg/L |
| 20231226005W001a | 109-01                 | 浑浊      | 邻苯二甲酸二(2-<br>乙基己基)酯 | 4.1×10 <sup>-4</sup> L | mg/L |
|                  | H20231229005<br>110-01 | 灰色、无气味、 | 邻苯二甲酸丁基<br>苄基酯      | 2.5×10 <sup>-4</sup> L | mg/L |
| 20231226005W002  |                        | 浑浊      | 邻苯二甲酸二(2-<br>乙基己基)酯 | 4.1×10 <sup>-4</sup> L | mg/L |
|                  | H20231229005           | 灰色、无气味、 | 邻苯二甲酸丁基<br>苄基酯      | 2.5×10 <sup>-4</sup> L | mg/L |
| 20231226005W003  | 111-01                 | 浑浊      | 邻苯二甲酸二(2-<br>乙基己基)酯 | 4.1×10 <sup>-4</sup> L | mg/L |
| 20231226005W004  | H20231229005           | 灰色、无气味、 | 邻苯二甲酸丁基<br>苄基酯      | 2.5×10 <sup>-4</sup> L | mg/L |
|                  | 112-01                 | 浑浊      | 邻苯二甲酸二(2-<br>乙基己基)酯 | 4.1×10 <sup>-4</sup> L | mg/L |

说明: 1、此样品为送样,只对当时送检的样品负责;

2、检测结果小于检出限或未检出以"检出限+L"表示。

#### 四、送样照片









# 深圳市惠利权环境检测有限公司 WWW. HLQ-CERT. COM

报告编号: HLQ20231229 (02) 005

第4页共4页



\*\*\*报告结束\*\*\*



### 8.5 2023 年土壤和地下水质量控制报告

## Stt

## 广东中科检测技术股份有限公司 质 控 专 用 章

## 质量控制报告

 编
 号
 GDZKBG20231226005ZKBG

 委托单位
 茂名天保再生资源发展有限公司

 项目名称
 茂名天保再生资源发展有限公司 2023 年土壤和地下水自行监测

 报告日期
 2024 年 01 月 15 日

编写: 王两雷

审定:

日期:2014年/月17日

广东中科检测技术股份有限公司 (检测专用章)



# **\$tt** 编号: GDZKBG20231226005ZKBG

#### 目 录

| 1, | 任务基本情况1         |
|----|-----------------|
| 2. | 分析方法及监测仪器1      |
| 3, | 人员资质5           |
| 4、 | 监测分析过程的质量控制6    |
|    | 4.1 采样规范要求6     |
|    | 4.2 样品流转过程质量控制6 |
|    | 4.3 实验室分析质量控制11 |
|    | 4.3.1 样品核对检查11  |
|    | 4.3.2 空白试验11    |
|    | 4.3.3 精密度控制16   |
|    | 4.3.4 准确度控制25   |
| 5, | 监测过程中受到干扰时的处理   |
| 6, | 报告及原始记录的质量控制38  |
| 7. | 质量控制结论          |



#### 1、任务基本情况

本机构受茂名天保再生资源发展有限公司的委托对该公司的土壤和地下水进行监测,本机构依据《土壤环境监测技术规范》(HJ/T166-2004)、《地下水环境监测技术规范》(HJ 164-2020)等标准、技术规范、文件要求和相应的检测方法以及管理体系文件对检测方法、仪器、人员等要素以及样品采集、样品流转、样品分析等过程进行质量控制和质量保证。

#### 2、分析方法及监测仪器

该项目样品的检测指标所执行的检测标准均已通过 CMA 资质认定,对应检测设备均按标准要求进行检定或校准。各检测指标对应的分析方法与仪器设备详见表 2-1, 2-2 和 2-3。

检测类 检出 检测项目 检测方法 检测仪器 单位 别 限 GB/T 7484-1987 PXSJ-216F 《水质 氟化物的测定 离子选择电极 氟化物 0.05 mg/L 离子计 法》 高锰酸盐 GB/T 5750.7-2023 (4.1) 《生活饮用水 指数 (耗 0.05 mg/L 标准检验方法 有机物综合指标》 氧量) HJ 535-2009 T6 新世纪 《水质 氨氮的测定 纳氏试剂分光光 氨氮 紫外可见分光光度 0.025 mg/L 度法》 计 НЈ 694-2014 AFS-230E 0.000 双道原子荧光光度 砷 《水质 汞、砷、硒、铋和锑的测定 原 mg/L 3 子荧光法》 it GB/T 5750.6-2023 (13.1) 《生活饮用 T6 新世纪 0.000 汞 水标准检验方法 金属指标 紫外可见分光光度 mg/L 地下水 04 合等离子体发射光谱法》 it 0.000 铅 mg/L 09 0.000 镉 mg/L 05 0.000 铜 mg/L HJ 700-2014 **ICAP RQ** 08 《水质 65 种元素的测定 电感耦合等 电感耦合等离子 0.000 铬 mg/L 离子体质谱法》 体质谱仪 11 0.000 镍 mg/L 06 0.000 锡 mg/L 08 0.000 锑 mg/L 15

表 2-1 地下水监测分析方法



# **Stt** 编号: GDZKBG20231226005ZKBG

| 检测类<br>别 | 检测项目                                       | 检测方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 检测仪器                               | 检出<br>限      | 单位   |
|----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|------|
| 773      | 锰                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.000        | mg/I |
|          | 锌                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.000<br>67  | mg/I |
|          | 苯                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 1.4          | μg/I |
|          | 甲苯                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 1.4          | μg/L |
|          | 乙苯                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.8          | μg/I |
|          | 间,对<br>二 -二甲<br>甲 苯                        | HJ 639-2012<br>《水质 挥发性有机物的测定 吹扫捕<br>集/气相色谱-质谱法》                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GCMS-QP2010S<br>E<br>气相色谱质谱联<br>用仪 | 2.2          | μg/L |
|          | 苯 邻-二<br>甲苯                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7000                               | 1.4          | μg/L |
|          | 苯乙烯                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.6          | μg/I |
|          | 萘                                          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                    | 0.012        | μg/L |
|          | 苊                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.005        | μg/L |
|          | 芴                                          | l'a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | 0.013        | μg/I |
|          | 苊烯                                         | i. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | 0.008        | μg/L |
|          | 菲                                          | [2] ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 0.012        | μg/I |
|          | 蒽                                          | P   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 0.004        | μg/L |
|          | 荧蒽                                         | [a *\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 0.005        | μg/I |
|          | 芘                                          | I an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | 0.016        | μg/L |
|          | 苯并[a]蒽                                     | HJ 478-2009<br>《水质 多环芳烃的测定 液液萃取和<br>固相萃取高效液相色谱法》                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | 0.012        | μg/L |
|          | 崫                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.005        | μg/L |
|          | 苯并[b]荧<br>蒽                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LC U3000<br>液相色谱仪                  | 0.004        | μg/L |
|          | 苯并[k]荧<br>蒽                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.004        | μg/L |
|          | 苯并[a]芘                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.004        | μg/L |
|          | 二苯并<br>[a,h]蒽                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.003        | μg/L |
|          | 苯并 (g,<br>h, i) 菲                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.005        | μg/L |
|          | 茚并<br>[1,2,3-cd]<br>芘                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 0.005        | μg/L |
|          | 邻苯二甲<br>酸二辛酯                               | HJ/T 72-2001 《水质邻苯二甲酸二甲<br>(二丁、二辛)酯的测定液相色谱法》                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LC U3000<br>液相色谱仪                  | 0.2          | μg/L |
|          | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | HJ 894-2017<br>《水质 可萃取性石油烃(C <sub>10</sub> -C <sub>40</sub> )的<br>测定 气相色谱法》                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GC9720Plus<br>气相色谱仪                | 0.01         | mg/I |
|          | 邻苯二甲<br>酸丁基苄<br>基酯 <sup>α</sup>            | GB/T 5750.8-2023<br>《生活饮用水标准检验方法 第 8 部<br>分:有机物指标》附录 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCMS-QP2010<br>气相色谱-质谱             | 2.5×1<br>0-4 | mg/I |
|          | 邻苯二甲酸二(2-乙基己)酯 <sup>α</sup>                | GB/T 5750.8-2023 (15.1)<br>《生活饮用水标准检验方法 第8部<br>分:有机物指标》<br>[目为分包项目,分包至(资质编号:2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 联用仪                                | 0.41         | μg/L |

第 2 页 共 38 页



### 表 2-2 土壤监测分析方法

| 11/2 | _  |              |                                              |                                 |         |       |
|------|----|--------------|----------------------------------------------|---------------------------------|---------|-------|
| 样品类别 | 松  | <b>並</b> 测项目 | 检测方法                                         | 检测仪器                            | 检出限     | 单位    |
|      | 1  | 氟化物          | GB/T 22104-2008<br>《土壤质量 氟化物的测定 离<br>子选择电极法》 | PXSJ-216F<br>离子计                | 2. 5    | μg    |
|      |    | 砷            | HJ 680-2013<br>《土壤和沉积物汞、砷、硒、铋、               | AFS-230E                        | 0.01    | mg/k  |
|      |    | 汞            | 锑的测定 微波消解/原子荧光<br>法》                         | 双道原子荧光光度计                       | 0.002   | mg/k  |
|      |    | 铅            | GB/T 17141-1997<br>《土壤质量 铅、镉的测定 石墨           | TAS-990AFG                      | 0.1     | mg/k  |
|      |    | 镉            | 炉原子吸收分光光度法》                                  | 原子吸收分光光度计                       | 0.01    | mg/kg |
|      |    | 铬            |                                              |                                 | 4       | mg/k  |
|      |    | 锌            | HJ 491-2019<br>《土壤和沉积物 铜、锌、铅、                | TAS-990AFG                      | 1       | mg/kį |
|      |    | 铜            | 镍、铬的测定火焰原子吸收分光<br>光度法》                       | 原子吸收分光光度计                       | 1       | mg/kį |
|      |    | 镍            |                                              |                                 | 3       | mg/kg |
| ±    |    | 锰            | HJ 803-2016<br>《土壤和沉积物 12 种金属元素              | ICAP RQ<br>中成期人知宜又什             | 0.7     | mg/kg |
| 壤    |    | 锑            | 的测定 王水提取-电感耦合等<br>离子体质谱法》                    | 电感耦合等离子体<br>质谱仪                 | 0.3     | mg/kg |
|      |    | 苯            |                                              |                                 | 0. 0019 | mg/kg |
|      |    | 甲苯           |                                              |                                 | 0.0013  | mg/kg |
|      |    | 乙苯           | HJ 605-2011<br>《土壤和沉积物 挥发性有机物                | GCMS-QP2010SE                   | 0.0012  | mg/kg |
|      | ž  | 卡乙烯          | 的测定 吹扫捕集/气相色谱-质<br>谱法》                       | 气相色谱质谱联用<br>仪                   | 0.0011  | mg/kg |
|      | 二甲 | 间,对-<br>二甲苯  |                                              |                                 | 0.0012  | mg/kg |
|      | 苯  | 邻-二甲 苯       |                                              |                                 | 0.0012  | mg/kg |
|      |    | <b>苊烯</b>    |                                              |                                 | 0.09    | mg/kg |
|      | 1  | 苊            | HJ 834-2017<br>《土壤和沉积物 半挥发性有机                | TRACE1300/ISQ7000<br>气相色谱-质谱联用仪 | 0.1     | mg/kg |
|      |    | 芴            | 物的测定 气相色谱-质谱法》                               |                                 | 0.08    | mg/kg |

| 样品类别 | 检测项目               | 检测方法                                                                        | 检测仪器                        | 检出限  | 单位    |
|------|--------------------|-----------------------------------------------------------------------------|-----------------------------|------|-------|
|      | 菲                  |                                                                             |                             | 0.1  | mg/kg |
|      | 蒽                  |                                                                             |                             | 0.1  | mg/kį |
|      | 荧蒽                 |                                                                             |                             | 0.2  | mg/k  |
|      | 芘                  |                                                                             |                             | 0.1  | mg/k  |
|      | 苯并 (g, h, i)       |                                                                             |                             | 0.1  | mg/k  |
|      | 苯并[a]蒽             |                                                                             |                             | 0.1  | mg/k  |
|      | 苯并[a]芘             |                                                                             |                             | 0.1  | mg/kį |
|      | 苯并[b]荧蒽            |                                                                             |                             | 0.2  | mg/kį |
|      | 苯并[k]荧蒽            |                                                                             |                             | 0.1  | mg/k  |
|      | 趌                  |                                                                             |                             | 0.1  | mg/k  |
|      | 二苯并[a,h]蒽          |                                                                             |                             | 0.1  | mg/kg |
|      | 茚并[1,2,3-cd]芘      |                                                                             |                             | 0.1  | mg/k  |
|      | 萘                  |                                                                             |                             | 0.09 | mg/kg |
|      | 邻苯二甲酸二<br>正辛酯      |                                                                             |                             | 0.2  | mg/k  |
|      | 邻苯二甲酸二<br>(2-乙基己)酯 |                                                                             |                             | 0.1  | mg/k  |
|      | 邻苯二甲酸丁<br>基苄酯      |                                                                             |                             | 0.2  | mg/kg |
|      | 石油烃(C10-C40)       | HJ 1021-2019 《土壤和沉积物<br>石油烃(C <sub>10</sub> -C <sub>40</sub> )的测定气相色<br>谱法》 | GC9720Plus<br>气相色谱仪         | 6    | mg/kg |
|      | 锡α                 | JY/T 0567-2020<br>《电感耦合等离子体发射光谱<br>分析方法通则》                                  | 2100DV<br>电感耦合等离子体<br>发射光谱仪 | 4    | mg/kį |

表 2-3 主要仪器校准/检定信息



| 序号 | 监测仪器设备型号/名称/编号                                            | 检定/校准日期       | 检定/校准<br>有效日期 | 仪器<br>设备<br>状态 |
|----|-----------------------------------------------------------|---------------|---------------|----------------|
| 1  | GCMS-QP2010SE 气相色谱质谱联用仪<br>(STT-FX0642)                   | 2023.03.18    | 2024.03.17    | 合格             |
| 2  | JF2004 电子天平(STT-FX0652)                                   | 2023.11.14    | 2024.11.13    | 合格             |
| 3  | TAS-990AFG 原子吸收分光光度计(STT-FX0363)                          | 2023.03.18    | 2024.03.17    | 合格             |
| 4  | TAS-990AFG 原子吸收分光光度计(STT-FX0641)                          | 2023.03.18    | 2024.03.17    | 合格             |
| 5  | ICAP RQ 电感耦合等离子体质谱仪(STT-FX0653)                           | 2023.07.31    | 2024.07.30    | 合格             |
| 6  | JF2004 电子天平(STT-FX0651)                                   | 2023,11.14    | 2024.11.13    | 合格             |
| 7  | YKM-36 石墨消解器(STT-FX0640)                                  | 2023.03.18    | 2024.03.17    | 合格             |
| 8  | YKM-36 石墨消解器 (STT-FX0515)                                 | 2023.11.14    | 2024.11.13    | 合格             |
| 9  | PXSJ-216F 离子计(STT-FX0781)                                 | 2023.03.18    | 2024.03.17    | 合格             |
| 10 | LC U3000 液相色谱仪(STT-FX0621)                                | 2023.03.18    | 2024.03.17    | 合格             |
| 11 | JT1003A 电子天平(STT-FX0373)                                  | 2022.11.23    | 2023.11.22    | 合格             |
| 12 | GC9720Plus 气相色谱仪(STT-FX0690)                              | 2023.03.18    | 2024.03.17    | 合格             |
| 13 | TRACE1300/ISQ7000 气相色谱-质谱联用仪<br>(STT-FX0780)              | 2023.11.27    | 2024.11.26    | 合格             |
| 14 | T6 新世纪紫外可见分光光度计(STT-FX0623)                               | 2023.11.14    | 2024.11.13    | 合格             |
| 15 | AFS-230E 双道原子荧光光度计(STT-FX0364)                            | 2023.11.14    | 2024.11.13    | 合格             |
| 16 | MDS-15 高通量微波消解萃取合成工作站<br>(STT-FX0596)                     | 2023.11.14    | 2024.11.13    | 合格             |
| 17 | GCMS-QP2010SE 气相色谱质谱联用仪<br>(STT-FX0642)                   | 2023.03.18    | 2024.03.17    | 合格             |
| 18 | optima 2100DV 电感耦合等离子体发射光谱仪<br>(HLQ/FX-069#) <sup>a</sup> | 2022.05.06    | 2024.05.05    | 合格             |
| 19 | GCMS-QP2010 气相色谱-质谱<br>联用仪(HLQ/FX-128#) <sup>α</sup>      | 2022.11.04    | 2024.11.03    | 合格             |
| 备注 | ""表示该仪器为分包方设备,分包至(资质编号:2<br>测有限公司。                        | 202319122787) | 深圳市惠利权        | 环境核            |

#### 3、人员资质

参与本次工作的监测技术人员均具备扎实的监测基础理论和专业知识;正确熟练 地掌握环境监测中操作技术和质量控制程序;熟知有关环境监测管理的法规、标准和 规定;参加了公司组织的技能培训,并通过考核取得上岗证。

表 3-1 参与本次监测任务人员一览表

| 序号 | 生产工单编号            | 人员类别 | 人员名单 | 上岗证编号                 |
|----|-------------------|------|------|-----------------------|
| 1  | GDZKSC20231226005 | 采样人员 | 洪世海  | STT 培字 第 YS2019025 号  |
| 2  | GDZKSC20231226005 | 采样人员 | 邓盛岳  | STT 培字 第 YS20200412 号 |
| 3  | GDZKSC20231226005 | 采样人员 | 王震   | STT 培字 第 YS20210807 号 |

广东中科检测技术股份有限公司

第 5 页 共 38 页

Guangdong Sino-Sci Testing Technology Corporation Limited



| 序号 | 生产工单编号             | 人员类别         | 人员名单             | 上岗证编号                 |
|----|--------------------|--------------|------------------|-----------------------|
| 4  | GDZKSC20231226005  | 采样人员         | 李权全              | STT 培字 第 YS20221201 号 |
| 5  | GDZKSC20231226005  | 检测人员         | 张纯               | STT 培字 第 YS20220903 号 |
| 6  | GDZKSC20231226005  | 检测人员         | 田孟怡              | STT 培字 第 YS20230802 号 |
| 7  | GDZKSC20231226005  | 检测人员         | 刘晓红              | STT 培字 第 YS20230801 号 |
| 8  | GDZKSC20231226005  | 检测人员         | 陈诗林              | STT 培字 第 YS20230302 号 |
| 9  | GDZKSC20231226005  | 检测人员         | 姚雨晴              | STT 培字 第 YS20230901 号 |
| 10 | GDZKSC20231226005  | 检测人员         | 吴欣兰              | STT 培字 第 YS20230301 号 |
| 11 | GDZKSC20231226005  | 检测人员         | 白雪丽              | STT 培字 第 YS20220503 号 |
| 12 | GDZKSC20231226005  | 检测人员         | 唐嘉仪              | STT 培字 第 YS20230303 号 |
| 13 | GDZKSC20231226005  | 检测人员         | 黄雨蝶              | STT 培字 第 YS20230803 号 |
| 14 | GDZKSC20231226005  | 检测人员         | 麦淇淳α             | FX23042601            |
| 15 | GDZKSC20231226005  | 检测人员         | 杨卓佳 <sup>α</sup> | FX23030601            |
| 16 | GDZKSC20231226005  | 检测人员         | 杜贵锋 <sup>a</sup> | FX22050701            |
| 17 | GDZKSC20231226005  | 检测人员         | 欧阳蕾α             | FX22042401            |
| 备注 | "a"表示该人员为分包方员工限公司。 | M-1775 3 P G | 7497067730       | 22787) 深圳市惠利权环境检测     |

#### 4、监测分析过程的质量控制

#### 4.1 采样规范要求

每次采样均派出2人以上富有经验的采样员,负责当天批次的采样任务,采样任 务下达以后采样组长对采样人员进行任务宣讲以及相关采样标准和注意事项的培训。 设备管理员对采样设备进行清点,检查采样设备的完好性和可靠性,包括设备检定校 准情况, 电量情况, 冷藏效果(≤4℃), 精度要求等, 确保项目的正常进行。

土壤采样严格按照《土壤环境监测技术规范》(HJ/T166-2004)中质量控制要求 进行采样。地下水严格按照《地下水环境监测技术规范》(HJ 164-2020)中质量控制 要求进行采样。

### 4.2 样品流转过程质量控制

4.2.1 样品运回实验室后,由专人及时将样品交接给样品管理员,同时按照样品 交接单、样品标签和采样原始记录进行清点核实样品,同时核实样品有效期,样品存 储温度(≤4℃)等。双方确定无误后在样品交接单签字确认,并对不同类别的样品进 行分类保存,需低温保存的样品放至冷藏室中存放,保证样品在保存期内分析完。同



### 编号: GDZKBG20231226005ZKBG

时做好保存环境条件的监控记录,确保保存环境的干燥、通风、无阳光直射、无污染; 并定期清理样品,防止霉变、鼠害及标签脱落。

4.2.2 样品领用时,样品领用人员应根据生产工单信息对样品标签完整性,样品完好性,有效期进行检查并记录。

该项目的土壤样品和地下水样品流转及分析时间表详见表 4.2-1 至 4.2-2。

表 4.2-1 土壤样品流转及分析时间表

| 序号 | 样品<br>个数 | 检测项目                                                                                         | 容器                          | 保存条件                                        | 样品允许<br>保留时间 | 采样时间       | 样品交接<br>时间 | 制样时间       | 前处理时<br>间  | 分析时间       |
|----|----------|----------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------|--------------|------------|------------|------------|------------|------------|
| 1  | 6        | 干物质(干)                                                                                       | PVC 土壤样品袋                   | 常温                                          | 1            | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 | 2024.01.04 |
| 2  | 6        | 水分(湿)                                                                                        | 聚四氟乙烯硅胶垫螺旋<br>盖棕色玻璃广口瓶      | 避光冷藏                                        | 1            | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 | 2023.12.30 |
| 3  | 6        | 砷、汞                                                                                          | 250mL 聚四氟乙烯-硅<br>胶垫螺旋盖棕色玻璃瓶 | 避光冷藏                                        | 28d          | 2023.12.29 | 2023.12.29 | 2023.12.29 | 2023.12.29 | 2023.12.29 |
| 4. | 6        | 氟化物                                                                                          | PVC 土壤样品袋                   | <4℃, 避光冷藏                                   | 1            | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 | 2024.01.04 |
| 5  | 6        | 铅、镉                                                                                          | PVC 土壌样品袋                   | 避光冷藏                                        | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 6  | 6        | 铬、锌                                                                                          | PVC 土壤样品袋                   | 避光冷藏                                        | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 7  | 6        | 铜                                                                                            | PVC 土壤样品袋                   | 避光冷藏                                        | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 8  | 6        | 镍                                                                                            | PVC 土壤样品袋                   | 避光冷藏                                        | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 9  | 6        | 锰                                                                                            | PVC 土壌样品袋                   | 避光冷藏                                        | 180d         | 2023,12.29 | 2023.12.29 | 2024.01.12 | 2024.01.12 | 2024.01.12 |
| 10 | 6        | 锑                                                                                            | PVC 土壤样品袋                   | 避光冷藏                                        | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.12 | 2024.01,12 | 2024.01.12 |
| 11 | 6        | 苯、乙苯、甲苯、<br>间二甲苯+对二甲<br>苯、邻-二甲苯、苯                                                            | 40mL 聚四氟乙烯-硅胶<br>垫螺旋盖棕色玻璃瓶  | 冷藏 0~4°C避光保存、加有 10mL 甲醇<br>(色谱级或农残级)<br>保护剂 | 7d           | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 12 | 6        | 乙烯                                                                                           |                             | 避光冷藏                                        | 7d           | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |
| 13 | 6        | 蒙、苊烯、苊、芴、<br>菲、蔥、邻苯二甲<br>酸(2-二乙基己基)<br>酯、荧蔥、芘、苄基<br>酯、苯并(a)酸二正等<br>酯、苯并(a)酸二正等<br>酯、苯并(b)荧蒽、 | 250mL 聚四氟乙烯-硅<br>胶垫螺旋盖棕色玻璃瓶 | 冷藏 0-4℃避光保存<br>(填满密封)                       | 10d          | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 | 2023.12.31 |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited

第 8 页 共 38 页

#### 编号: GDZKBG20231226005ZKBG

| 序号 | 样品<br>个数 | 检测项目                                                               | 容器        | 保存条件 | 样品允许<br>保留时间 | 采样时间       | 样品交接<br>时间 | 制样时间       | 前处理时间      | 分析时间       |
|----|----------|--------------------------------------------------------------------|-----------|------|--------------|------------|------------|------------|------------|------------|
|    |          | 苯并[k]荧蒽、苯并<br>[a]芘、茚并<br>[1,2,3-cd]芘、二苯<br>并[a,h]蒽、苯并<br>(g,h,i) 菲 |           |      |              |            |            |            |            |            |
| 14 | 6        | 石油烃 (C10-C40)                                                      | PVC 土壤样品袋 | 避光冷藏 | 180d         | 2023.12.29 | 2023.12.29 | 2024.01.03 | 2024.01.03 | 2024.01.04 |

#### 表 4.2-2 地下水样品流转及分析时间表

| 序号 | 样品个数 | 检测项目                                   | 容器       | 保存剂及用量              | 保存条件                | 样品允许保<br>留时间               | 采样时间       | 样品交接<br>时间 | 前处理时间      | 分析时间       |
|----|------|----------------------------------------|----------|---------------------|---------------------|----------------------------|------------|------------|------------|------------|
| ı  | 4    | 邻苯二甲酸二辛酯                               | 玻璃瓶      | 用盐酸和氢氧化钠调节 pH 为7 左右 | 冷藏 0~4<br>℃避光保<br>存 | 7d 内完成萃<br>取,30d 内完<br>成分析 | 2023.12.29 | 2023.12.29 | 2024.01.01 | 2024,01.01 |
| 2  | 4    | 石油烃(C <sub>10</sub> -C <sub>40</sub> ) | 玻璃瓶      | 加盐酸酸化至 pH≤2         | 冷藏 0~4<br>℃避光保<br>存 | 14d 内完成萃取,提取液40d 内分析       | 2023.12.29 | 2023.12.29 | 2024.01.07 | 2024.01.07 |
| 3  | 4    | 氟化物                                    | 聚乙烯瓶     |                     | 冷藏 0~4<br>℃避光保<br>存 | 7d                         | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 |
| 4  | 4    | 铜、镍、铅、镉、铬、<br>锡、锑、锰、锌                  | 聚乙烯瓶     | 加硝酸,pH≤2            | 冷藏 0~4<br>℃避光保<br>存 | 14d                        | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 |
| 5  | 4    | 苯、甲苯、乙苯、二<br>甲苯、苯乙烯                    | 玻璃瓶      | 1                   | 冷藏 0~4<br>℃避光保<br>存 | 14d                        | 2023.12.29 | 2023.12.29 | 2024.01.09 | 2024.01.09 |
| 6  | 4    | 多环芳烃(萘、苊、<br>芴、苊烯、菲、蒽、                 | 棕色<br>玻璃 | 每升水中加入 80mg 硫代硫酸钠   | 冷藏 0~4<br>℃避光保      | 7d 内萃取,<br>40d 内分析         | 2023.12.29 | 2023.12.29 | 2023.12.31 | 2023.12.31 |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited 第 9 页 共 38 页



#### 编号: GDZKBG20231226005ZKBG



| 序号 | 样品个数 | 检测项目                                                                                                  | 容器   | 保存剂及用量          | 保存条件                | 样品允许保<br>留时间 | 采样时间       | 样品交接<br>时间 | 前处理时间      | 分析时间       |
|----|------|-------------------------------------------------------------------------------------------------------|------|-----------------|---------------------|--------------|------------|------------|------------|------------|
|    |      | 荧蒽、芘、苯并(a)<br>蒽、菌、苯并(b) 荧<br>蒽、苯并(k) 荧蒽、<br>苯并(a) 芘、二苯并<br>(a,h) 蒽、苯并(g,h,i)<br>花、茚并(1,2,3-c,d)<br>芘) | 瓶    |                 | 存                   |              |            |            |            |            |
| 7  | 4    | 耗氧量                                                                                                   | 玻璃瓶  | 加硫酸处理           | 冷藏 0~4<br>℃避光保<br>存 | 2d           | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 |
| 8  | 4    | 氨氨                                                                                                    | 聚乙烯瓶 | 加硫酸, pH≤2       | 冷藏 0~4<br>℃避光保<br>存 | 7d           | 2023.12.29 | 2023.12.29 | 2023.12.30 | 2023.12.30 |
| 9  | 4    | 砷、汞                                                                                                   | 聚乙烯瓶 | 1L 水中加浓 HCl10mL | 冷藏 0~4<br>℃避光保<br>存 | 14d          | 2023.12.29 | 2023.12.29 | 2024.01.04 | 2024.01.04 |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited 第 10 页 共 38 页



编号: GDZKBG20231226005ZKBG

#### 4.3 实验室分析质量控制

#### 4.3.1 样品核对检查

送入实验室样品首先应核对样品标签、采样容器、包装情况、保存条件和有效期 等,符合要求的样品方可开展分析。

#### 4.3.2 空白试验

采样环节,每批样品应设置全程序空白、运输空白、现场空白、设备空白等。实验室分析环节,每批样品分析时,均应测试实验室空白,空白样品测定结果中目标物浓度不应超过方法检出限,空白样品测试结果需记录在测试原始记录中。

按照采样批次和分析批次要求,本项目土壤设置1个运输空白,1个全程序空白,1至2个实验室空白;地下水共设置1个现场空白、1个运输空白,1个全程序空白,1个设备空白,1至2个实验室空白;用于重金属和其它理化指标的现场质量控制,目的是检查样品在现场,运输过程和从采样到分析全过程中是否受到污染,使用检出限或测定下限作为控制要求。空白试验评价结果统计见表 4.3-1 和 4.3-2。



表4.3-1土壤空白分析评价结果统计表

| 序号   | 检测项目          | 空白值   | 样品 | 全程 | 序空白  | 运  | <b>俞空白</b> | 实验 | 全空白       | eder de THE all | 判定 |
|------|---------------|-------|----|----|------|----|------------|----|-----------|-----------------|----|
| 11.4 | 位例项目          | 单位    | 个数 | 个数 | 空白值  | 个数 | 空白值        | 个数 | 空白值       | 空白要求            | 结果 |
| 1    | 干物质(干)        | %     | 6  | 1  | 1    | 1- | 1          | 1  | 1         | 1               | 1  |
| 2    | 水分(湿)         | %     | 6  | T  | 1    | 1  | 1          | 1  | 1         | 1               | 1  |
| 3    | 砷             | mg/kg | 6  | 1  | 1    | 1  | 1          | 2  | 均为 0.01L  | 0.01L           | 合格 |
| 4    | 汞             | mg/kg | 6  | 1  | 1    | 1  | 1          | 2  | 均为 0.002L | 0.002L          | 合格 |
| 5    | 铅             | mg/kg | 6  | t  | 1    | 1  | 1          | 2  | 均为 0.1L   | 0.1L            | 合格 |
| 6    | 镉             | mg/kg | 6  | 1  | 1    | 1  | 1          | 2  | 均为 0.01L  | 0.01L           | 合格 |
| 7    | 铜             | mg/kg | 6  | 1  | 1    | 1  | 7          | 2  | 均为 IL     | 1L              | 合格 |
| 8    | 镍             | mg/kg | 6  | 1  | 1    | 1  | 1          | 2  | 均为 3L     | 3L              | 合格 |
| 9    | 铬             | mg/kg | 6  | 1  | 1    | 1  | 1          | 2  | 均为4L      | 4L              | 合格 |
| 10   | 锌             | mg/kg | 6  | 1  | 1    | 1  | 1          | 2  | 均为 1L     | 1L              | 合格 |
| 11   | 氟化物           | μg    | 6  | 1  | 1    | 1  | 1          | 2  | 均为 2.5L   | 2.5L            | 合格 |
| 12   | 锰             | mg/kg | 6  | 1  | 1    | 1  | 1          | 2  | 均为 0.7L   | 0.7L            | 合格 |
| 13   | 锑             | mg/kg | 6  | 1  | 1    | /  | 1          | 2  | 均为 0.3L   | 0.3L            | 合格 |
| 14   | 苯             | μg/kg | 6  | 1  | 1.9L | 1  | 1.9L       | 1  | 1.9L      | 1.9L            | 合格 |
| 15   | 甲苯            | μg/kg | 6  | 1  | 1.3L | 1  | 1.3L       | 1  | 1.3L      | 1.3L            | 合格 |
| 16   | 乙苯            | μg/kg | 6  | 1  | 1.2L | 1  | 1.2L       | 1  | 1.2L      | 1.2L            | 合格 |
| 17   | 间二甲苯+对二甲苯     | μg/kg | 6  | 1  | 1.2L | 1  | 1.2L       | 1  | 1.2L      | 1.2L            | 合格 |
| 18   | 邻-二甲苯         | μg/kg | 6  | 1  | 1.2L | 1  | 1.2L       | 1  | 1.2L      | 1.2L            | 合格 |
| 19   | 苯乙烯           | μg/kg | 6  | 1  | 1.1L | 1  | 1.1L       | 1  | 1.1L      | 1.1L            | 合格 |
| 20   | 石油烃 (C10-C40) | mg/kg | 6  | 1. | 1    | 1  | 1          | 1  | 6L        | 6L              | 合格 |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited 第 12 页 共 38 页

#### 编号: GDZKBG20231226005ZKBG

| 序号    | 检测项目                  | 空白值   | 样品 | 全程 | 序空白 | 运  | 俞空白 | 实验 | 室空白   | (A. 4 mm b) | 判定 |
|-------|-----------------------|-------|----|----|-----|----|-----|----|-------|-------------|----|
| 11. 9 | 位例次日                  | 单位    | 个数 | 个数 | 空白值 | 个数 | 空白值 | 个数 | 空白值   | 空白要求        | 结果 |
| 21    | 萘                     | mg/kg | 6  | /  | 1   | 1  | 1   | 1  | 0.09L | 0.09L       | 合格 |
| 22    | 苊烯                    | mg/kg | 6  | -/ | 1   | 1  | 1   | 1  | 0.09L | 0.09L       | 合格 |
| 23    | 苊                     | mg/kg | 6  | -7 | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 24    | 芴                     | mg/kg | 6  | -/ | /   | 1  | 1   | 1  | 0.08L | 0.08L       | 合格 |
| 25    | 菲                     | mg/kg | 6  | 1  | /   | 1  | 1   | 1  | .1L   | .IL         | 合格 |
| 26    | 蔥                     | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 27    | 邻苯二甲酸 (2-二乙<br>基己基) 酯 | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 28    | 荧蒽                    | mg/kg | 6  | 1  | 1   | 1  | /   | 1  | 0.2L  | 0.2L        | 合格 |
| 29    | 芘                     | mg/kg | 6  | 1  | 1   | 1  | 7   | 1  | 0.1L  | 0.1L        | 合格 |
| 30    | 邻苯二甲酸丁基苄<br>基酯        | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.2L  | 0.2L        | 合格 |
| 31    | 苯并[a]蒽                | mg/kg | 6  | 1  | /   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 32    | 蔗                     | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 33    | 邻苯二甲酸二正辛<br>酯         | mg/kg | 6  | γ. | 1   | 1  | 1   | 1  | 0.2L  | 0.2L        | 合格 |
| 34    | 苯并[b]荧蒽               | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.2L  | 0.2L        | 合格 |
| 35    | 苯并[k]荧蒽               | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 36    | 苯并[a]芘                | mg/kg | 6  | 1  | /   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 37    | 茚并[1,2,3-cd]芘         | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 38    | 二苯并[a,h]蒽             | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 39    | 苯并 (g,h,i) 苝          | mg/kg | 6  | 1  | 1   | 1  | 1   | 1  | 0.1L  | 0.1L        | 合格 |
| 40    | 锡                     | mg/kg | 6  | 1  | 1   | 1  | 1   | 2  | 均为4L  | 4L          | 合格 |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited

第 13 页 共 38 页



#### 表4.3-2地下水空白分析评价结果统计表

| 序号 | 4A.200 yes 12 | No do the Mr Do | 样品 | 现  | 场空白    | 运  | 俞空白    | 全程 | 序空白    | 设  | 备空白    | 实  | 验室空白      | 空白     | 判定 |
|----|---------------|-----------------|----|----|--------|----|--------|----|--------|----|--------|----|-----------|--------|----|
| 计写 | 检测项目          | 空白值单位           | 个数 | 个数 | 空白值    | 个数 | 空白值    | 个数 | 空白值    | 个数 | 空白值    | 个数 | 空白值       | 要求     | 结果 |
| 1  | 石油烃 (C10-C40) | mg/L            | 4  | 1  | 0.01L  | 1  | 0.01L  | 1  | 0.01L  | -1 | 0.01L  | 1  | 0.01L     | 0.01L  | 合格 |
| 2  | 邻苯二甲酸二辛脂      | μg/L            | 4  | 1  | 0.2L      | 0.2L   | 合格 |
| 3  | 氟化物           | mg/L            | 4  | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 2  | 均为 0.005L | 0.005L | 合格 |
| 4  | 苯             | μg/L            | 4  | 1  | 1.4L      | 1.4L   | 合格 |
| 5  | 甲苯            | μg/L            | 4  | 1  | 1.4L   | 1  | 1.4L   | 1  | 1.4L   | 1. | 1.4L   | 1  | 1.4L      | 1.4L   | 合格 |
| 6  | 乙苯            | μg/L            | 4  | 1  | 0.8L      | 0.8L   | 合格 |
| 7  | 间,对二甲苯        | μg/L            | 4  | 1  | 2.2L      | 2.2L   | 合格 |
| 8  | 邻-二甲苯         | μg/L            | 4  | 1  | 1.4L      | 1.4L   | 合格 |
| 9  | 苯乙烯           | μg/L            | 4  | 1  | 0.6L      | 0.6L   | 合格 |
| 10 | 铅             | μg/L            | 4  | 1  | 0.09L  | 1  | 0.09L  | 1  | 0.09L  | 1  | 0.09L  | 2  | 均为 0.09L  | 0.09L  | 合格 |
| 11 | 镉             | μg/L            | 4  | 1  | 0.05L  | 1  | 0.05L  | 1  | 0.05L  | 1  | 0.05L  | 2  | 均为 0.05L  | 0.05L  | 合格 |
| 12 | 铜             | μg/L            | 4  | 1  | 0.08L  | 1  | 0.08L  | 1  | 0.08L  | 1  | 0.08L  | 2  | 均为 0.08L  | 0.08L  | 合格 |
| 13 | 铬             | μg/L            | 4  | 1  | 0.11L  | 1  | 0.11L  | 1  | 0.11L  | 1  | 0.11L  | 2  | 均为 0.11L  | 0.11L  | 合格 |
| 14 | 镍             | μg/L            | 4  | 1  | 0.06L  | 1  | 0.06L  | 1  | 0.06L  | 1  | 0.06L  | 2  | 均为 0.06L  | 0.06L  | 合格 |
| 15 | 锡             | μg/L            | 4  | 1  | 0.08L  | 1  | 0.08L  | 1  | 0.08L  | 1  | 0.08L  | 2  | 均为 0.08L  | 0.08L  | 合格 |
| 16 | 锑             | μg/L            | 4  | 1  | 0.15L  | 1  | 0.15L  | 1  | 0.15L  | 1  | 0.15L  | 2  | 均为 0.15L  | 0.15L  | 合格 |
| 17 | 锰             | μg/L            | 4  | 1  | 0.12L  | 1  | 0.12L  | 1  | 0.12L  | 1  | 0.12L  | 2  | 均为 0.12L  | 0.12L  | 合格 |
| 18 | 锌             | μg/L            | 4  | 1  | 0.67L  | 1  | 0.67L  | 1  | 0.67L  | 1  | 0.67L  | 2  | 均为 0.67L  | 0.67L  | 合格 |
| 19 | 耗氧量           | mg/L            | 4  | 1  | 0.05L     | 0.05L  | 合格 |
| 20 | 氨氮            | mg/L            | 4  | 1  | 0.025L | 1  | 0.025L | 1  | 0.025L | 1  | 0.025L | 2  | 均为 0.025L | 0.025L | 合格 |
| 21 | 砷             | μg/L            | 4  | 1  | 0.3L   | 1  | 0.3L   | 1  | 0.3L   | 1  | 0.3L   | 2  | 均为 0.3L   | 0.3L   | 合格 |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited 第 14 页 共 38 页

#### 编号: GDZKBG20231226005ZKBG

| 序号   | 检测项目                  | 空白值单位        | 样品 | 现  | 场空白    | 运  | 俞空白    | 全程 | 序空白    | 设金 | 各空白    | 实  | 验室空白                         | 空白                        | 判定 |
|------|-----------------------|--------------|----|----|--------|----|--------|----|--------|----|--------|----|------------------------------|---------------------------|----|
| 17.5 | 位例项目                  | <b>公口但甲位</b> | 个数 | 个数 | 空白值    | 个数 | 空白值    | 个数 | 空白值    | 个数 | 空白值    | 个数 | 空白值                          | 要求                        | 结果 |
| 22   | 汞                     | μg/L         | 4  | 1  | 0.04L  | 1  | 0.04L  | 1_ | 0.04L  | 1  | 0.04L  | 2  | 均为 0.04L                     | 0.04L                     | 合格 |
| 23   | 萘                     | μg/L         | 4  | 1  | 0.012L | 1  | 0.012L | 1  | 0.012L | 1  | 0.012L | 1  | 0.012L                       | 0.012L                    | 合格 |
| 24   | 苊                     | μg/L         | 4  | 1  | 0.005L | I  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L                       | 0.005L                    | 合格 |
| 25   | 芴                     | μg/L         | 4  | 1  | 0.013L | 1  | 0.013L | 1  | 0.013L | 1  | 0.013L | 1  | 0.013L                       | 0.013L                    | 合格 |
| 26   | 苊烯                    | μg/L         | 4  | 1  | 0.008L | 1  | 0.008L | 1  | 0.008L | 1  | 0.008L | 1  | 0.008L                       | 0.008L                    | 合格 |
| 27   | 菲                     | μg/L         | 4  | 1  | 0.012L | 1  | 0.012L | 1  | 0.012L | 1  | 0.012L | 1  | 0.012L                       | 0.012L                    | 合格 |
| 28   | 蔥                     | μg/L         | 4  | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L                       | 0.004L                    | 合格 |
| 29   | 荧蒽                    | μg/L         | 4  | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L                       | 0.005L                    | 合格 |
| 30   | 芘                     | μg/L         | 4  | 1  | 0.016L | 1  | 0.016L | 1  | 0.016L | 1  | 0.016L | 1  | 0.016L                       | 0.016L                    | 合格 |
| 31   | 苯并 (a) 蒽              | μg/L         | 4  | 1  | 0.012L | 1. | 0.012L | 1  | 0.012L | 1  | 0.012L | -1 | 0.012L                       | 0.012L                    | 合格 |
| 32   | 蔗                     | μg/L         | 4  | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L                       | 0.005L                    | 合格 |
| 33   | 苯并(b) 荧蒽              | μg/L         | 4  | 1  | 0.004L | 1  | 0.004L | I  | 0.004L | 1  | 0.004L | 1  | 0.004L                       | 0.004L                    | 合格 |
| 34   | 苯并(k) 荧蒽              | μg/L         | 4  | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L                       | 0.004L                    | 合格 |
| 35   | 苯并 (a) 芘              | μg/L         | 4  | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L | 1  | 0.004L                       | 0.004L                    | 合格 |
| 36   | 二苯并 (a,h) 蒽           | μg/L         | 4  | 1  | 0.003L | 1  | 0.003L | 1  | 0.003L | 1  | 0.003L | 1  | 0.003L                       | 0.003L                    | 合格 |
| 37   | 苯并 (g,h,i) 菲          | μg/L         | 4  | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | T  | 0.005L | 1  | 0.005L                       | 0.005L                    | 合格 |
| 38   | 茚并(1,2,3-c,d)<br>芘    | μg/L         | 4  | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L | 1  | 0.005L                       | 0.005L                    | 合格 |
| 39   | 邻苯二甲酸丁基苄<br>基酯        | mg/L         | 4  | 1  | 7      | 1  | 1      | 1  | 7      | 1  | 1      | 2  | 均为<br>2.5×10-4L              | 2.5×10 <sup>-4</sup><br>L | 合格 |
| 40   | 邻苯二甲酸二 (2-<br>乙基己基) 酯 | mg/L         | 4  | 1  | 1      | 1  | 1      | 1  | 1      | 1  | 1      | 2  | 均为<br>4.1×10 <sup>-4</sup> L | 4.1×10 <sup>-4</sup><br>L | 合格 |

广东中科检测技术股份有限公司 Guangdong Sino-Sci Testing Technology Corporation Limited 第 15 页 共 38 页



#### 4.3.3 精密度控制

#### 4.3.3.1 测定率

现场采样每个检测项目每批次按 10%的比例采集现场平行样开展分析,每批次样品分析时,每个检测项目均须做实验室平行样分析。在每批次分析样品中,应随机抽取 5%的样品进行实验室平行样分析。当样品少于 10 个时,平行样不少于 1 个。

#### 4.3.3.2 测定方式

实验室平行,由分析者自行编入的明码平行样,或由质控员在采样现场或实验室编入的密码平行样。

#### 4.3.3.3 合格要求

平行双样测定结果的相对偏差在允许误差控制范围之内者为合格。当平行双样测定 合格率低于 95%时,除对当批样品重新测定外再增加样品数 10%~20%的平行样,直 至平行双样测定合格率大于 95%。

#### 4.3.3.4 相对偏差 (RD) 的计算

RD (%) = (A-B) / (A+B) \*100%

若平行双样测定值(A,B)的相对偏差(RD)在允许控制的范围内,则该平行双样的精密度控制为合格,否则为不合格。

现场平行样品、实验室平行样品的测试结果及判定结果统计见表 4.3-3 至表 4.3-9。

表 4.3-3 土壤现场平行样和实验室平行样比例统计表

| 序号 | 检测项目   | 样品个数 | 实验室平行样个数 | 实验室比例 | 现场平行样个数 | 现场比例  |
|----|--------|------|----------|-------|---------|-------|
| 1  | 干物质(干) | 6    | 1        | 16.7% | 1       | 16.7% |
| 2  | 水分(湿)  | 6    | 1        | 16.7% | 1       | 16.7% |
| 3  | 砷      | 6    | 1        | 16.7% | 1       | 16.7% |
| 4  | 汞      | 6    | 1        | 16.7% | 1       | 16.7% |
| 5  | 铅      | 6    | 1        | 16.7% | 1       | 16.7% |
| 6  | 镉      | 6    | 1        | 16.7% | 1       | 16.7% |
| 7  | 铜      | 6    | 1        | 16.7% | 1       | 16.7% |
| 8  | 镍      | 6    | 1        | 16.7% | 1       | 16.7% |
| 9  | 铬      | 6    | 1        | 16.7% | 1       | 16.7% |
| 10 | 锌      | 6    | 1        | 16.7% | 1       | 16.7% |
| 11 | 氟化物    | 6    | 1        | 16.7% | 1       | 16.7% |
| 12 | 锰      | 6    | 1        | 16.7% | 1       | 16.7% |

广东中科检测技术股份有限公司

第 16 页 共 38 页

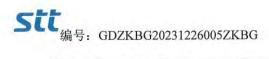
Guangdong Sino-Sci Testing Technology Corporation Limited



### 编号: GDZKBG20231226005ZKBG

| 序号 | 检测项目                  | 样品个数 | 实验室平行样个数 | 实验室比例 | 现场平行样个数 | 现场比例  |
|----|-----------------------|------|----------|-------|---------|-------|
| 13 | 锑                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 14 | 苯                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 15 | 甲苯                    | 6    | 1        | 16.7% | 1       | 16.7% |
| 16 | 乙苯                    | 6    | 1        | 16.7% | 1       | 16.7% |
| 17 | 间二甲苯+对二甲苯             | 6    | 1        | 16.7% | 1       | 16.7% |
| 18 | 邻-二甲苯                 | 6    | 1        | 16.7% | 1       | 16.7% |
| 19 | 苯乙烯                   | 6    | 1        | 16.7% | 1       | 16.7% |
| 20 | 石油烃 (C10-C40)         | 6.   | 1        | 16.7% | 1       | 16.7% |
| 21 | 萘                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 22 | 苊烯                    | 6    | I        | 16.7% | 1       | 16.7% |
| 23 | 苊                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 24 | 芴                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 25 | 菲                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 26 | 蒽                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 27 | 邻苯二甲酸 (2-二乙基<br>己基) 酯 | 6    | 1        | 16.7% | 1       | 16.7% |
| 28 | 荧蒽                    | 6    | 1        | 16.7% | 1       | 16.7% |
| 29 | 芘                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 30 | 邻苯二甲酸丁基苄基<br>酯        | 6    | 1        | 16.7% | 1       | 16.7% |
| 31 | 苯并[a]蒽                | 6    | 1        | 16.7% | 1       | 16.7% |
| 32 | 崫                     | 6    | 1        | 16.7% | 1       | 16.7% |
| 33 | 邻苯二甲酸二正辛酯             | 6    | 1        | 16.7% | 1       | 16.7% |
| 34 | 苯并[b]荧蒽               | 6    | 1        | 16.7% | 1       | 16.7% |
| 35 | 苯并[k]荧蒽               | 6    | 1        | 16.7% | 1       | 16.7% |
| 36 | 苯并[a]芘                | 6    | 1        | 16.7% | 1       | 16.7% |
| 37 | 茚并[1,2,3-cd]芘         | 6    | 1        | 16.7% | 1       | 16.7% |
| 38 | 二苯并[a,h]蒽             | 6    | 1        | 16.7% | 1       | 16.7% |
| 39 | 苯并(g,h,i) 苝           | 6    | 1        | 16.7% | 1       | 16.7% |
| 40 | 锡                     | 6    | 1        | 16.7% | 1       | 16.7% |

#### 表 4.3-4 土壤现场平行样分析结果及判定表 (1)


| 序号 | 检测项目   | 样品编号             | 检测<br>结果 | 单位 | 绝对偏差 | 允许绝对<br>偏差 | 判定<br>结果 |
|----|--------|------------------|----------|----|------|------------|----------|
| 1  | 干物质(风  | 20231226005S001  | 99.5     | 0/ | 0.0  | ~100       | V 14     |
| 1  | 干)     | 20231226005S001a | 99.5     | %  | 0.0  | ≤±0.2      | 合格       |
| 2  | 水分(湿)  | 202312260058001  | 10.5     | 07 | 0.0  | اغ فارد    | V 14     |
| 2  | 小刀 (碰) | 20231226005S001a | 10.3     | %  | 0.2  | ≤±1.5      | 合格       |

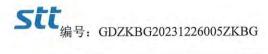
#### 表 4.3-5 土壤现场平行样分析结果及判定表 (2)

广东中科检测技术股份有限公司

第 17 页 共 38 页

Guangdong Sino-Sci Testing Technology Corporation Limited




| 序号  | 检测项目          | 样品编号             | 检测<br>结果 | 单位                                    | 相对偏差% | 允许相对偏<br>差% | 判定组果  |
|-----|---------------|------------------|----------|---------------------------------------|-------|-------------|-------|
|     | 铅             | 20231226005S001  | 55.5     | ma/lsa                                | 0.27  | <30         | 合格    |
| 1   | 村             | 20231226005S001a | 55.2     | mg/kg                                 | 0.27  | 230         | ыли   |
| •   | Ł I           | 20231226005S001  | 0.18     | ma/lea                                | 2.88  | ≤30         | 合格    |
| 2   | 镉             | 20231226005S001a | 0.17     | mg/kg                                 | 2.00  | 230         | ा भा  |
|     | THE (C C )    | 20231226005S001  | 101      | ma/lea                                | 3.35  | ≤25         | 合格    |
| 3   | 石油烃(C10-C40)  | 20231226005S001a | 108      | mg/kg                                 | 3,33  | 523         | H 1H  |
|     | HE            | 20231226005S001  | 7        | /1                                    | 0.00  | ≤20         | 合格    |
| 4   | 铜             | 20231226005S001a | 7        | mg/kg                                 | 00.0  | ≥20         | 口作    |
| 2   | A-th          | 20231226005S001  | 14       |                                       | 0.69  | <20         | 合格    |
| 5   | 镍             | 20231226005S001a | 17       | mg/kg                                 | 9.68  | ≤20         | 口作    |
| 4   | b.b.          | 20231226005S001  | 19       | 7                                     | 5.00  | <20         | 合格    |
| 6   | 铬             | 20231226005S001a | 21       | mg/kg                                 | 5.00  | ≤20         | 口伯    |
| 4   | 634           | 20231226005S001  | 90       | 0                                     | 0.00  | <20         | AW    |
| 7   | 锌             | 20231226005S001a | 90       | mg/kg                                 | 0.00  | ≤20         | 合格    |
|     | 107           | 20231226005S001  | 246      |                                       | 1.22  | <20         | AH    |
| 8   | 锰             | 20231226005S001a | 240      | mg/kg                                 | 1.23  | ≤30         | 合格    |
|     |               | 20231226005S001  | 0.3L     |                                       | 0.00  | -10         | A 14  |
| 9   | 锑             | 20231226005S001a | 0.3L     | mg/kg                                 | 0.00  | ≤40         | 合格    |
| Jan |               | 20231226005S001  | 1.9L     | н                                     | 0.00  | -25         | A +40 |
| 10  | 苯             | 20231226005S001a | 1.9L     | μg/kg                                 | 0.00  | ≤25         | 合格    |
|     |               | 20231226005S001  | 1.3L     |                                       | 0.00  | -05         | V 14  |
| 11  | 甲苯            | 20231226005S001a | 1.3L     | μg/kg                                 | 0.00  | ≤25         | 合格    |
|     | =2.000        | 20231226005S001  | 1.2L     |                                       | 0.00  | -0.5        | V 14  |
| 12  | 乙苯            | 20231226005S001a | 1.2L     | μg/kg                                 | 0.00  | ≤25         | 合格    |
| San | 间二甲苯+对二甲      | 20231226005S001  | 1.2L     |                                       | 0.00  | -05         | V 14  |
| 13  | 苯             | 20231226005S001a | 1.2L     | μg/kg                                 | 0.00  | ≤25         | 合格    |
|     | Arr. Fred the | 20231226005S001  | 1.2L     |                                       | 0.00  | -05         | V 14  |
| 14  | 邻-二甲苯         | 20231226005S001a | 1.2L     | μg/kg                                 | 0.00  | ≤25         | 合格    |
|     | ath me low    | 20231226005S001  | 1.1L     | , , , , , , , , , , , , , , , , , , , | 0.00  | -05         | A.14  |
| 15  | 苯乙烯           | 20231226005S001a | 1.1L     | μg/kg                                 | 0.00  | ≤25         | 合格    |
|     | 20            | 20231226005S001  | 3.37     |                                       | 0.00  | -16         | V 14  |
| 16  | 砷             | 20231226005S001a | 3.43     | mg/kg                                 | 0.88  | ≤15         | 合格    |
|     |               | 20231226005S001  | 0.064    | Sec. H                                | 2.02  | -20         | A46   |
| 17  | 汞             | 20231226005S001a | 0.060    | mg/kg                                 | 3.23  | ≤30         | 合格    |
|     | A-11-11       | 20231226005S001  | 650      |                                       | 2.10  | -10         | V 14  |
| 18  | 氟化物           | 20231226005S001a | 679      | mg/kg                                 | 2.18  | ≤10         | 合格    |
| 19  | 萘             | 20231226005S001  | 0.09L    | mg/kg                                 | 0.00  | ≤40         | 合格    |



编号: GDZKBG20231226005ZKBG

| 序号 | 检测项目                                     | 样品编号             | 检测<br>结果 | 单位    | 相对偏差%     | 允许相对偏<br>差% | 判定结<br>果 |
|----|------------------------------------------|------------------|----------|-------|-----------|-------------|----------|
|    |                                          | 20231226005S001a | 0.09L    |       |           |             |          |
| 20 | 苊烯                                       | 20231226005S001  | 0.09L    |       | 0.00      | <10         | V+4      |
| 20 | )G Mi                                    | 20231226005S001a | 0.09L    | mg/kg | 0.00      | ≤40         | 合格       |
| 21 | 苊                                        | 20231226005S001  | 0.1L     |       | 0.00      | -10         | V 74     |
| 21 | /6                                       | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
| 22 | 芴                                        | 20231226005S001  | 0.8L     |       | 0.00      | 310         | V 14     |
| 22 | 90                                       | 20231226005S001a | 0.8L     | mg/kg | 0.00      | ≤40         | 合格       |
| 22 | 菲                                        | 20231226005S001  | 0.1L     | п     | 0.00      | -110        | A 14     |
| 23 | AE.                                      | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
| 24 | thr                                      | 20231226005S001  | 0.1L     |       |           | 14          | A 14     |
| 24 | 蒽                                        | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
| 25 | 邻苯二甲酸(2-二                                | 20231226005S001  | 0.1L     |       | 111       | 522         | A 14     |
| 25 | 乙基己基)酯                                   | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
|    | -11117                                   | 20231226005S001  | 0.2L     |       |           | ~74         | A 16     |
| 26 | 荧蒽                                       | 20231226005S001a | 0.2L     | mg/kg | 0.00      | ≤40         | 合格       |
|    |                                          | 20231226005S001  | 0.1L     | 7     | 1000      | - A         |          |
| 27 | 芘                                        | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
|    | 邻苯二甲酸丁基                                  | 20231226005S001  | 0.2L     |       | 1.000.11  | 50.5        | 4.16     |
| 28 | 苄基酯                                      | 20231226005S001a | 0.2L     | mg/kg | 0.00      | ≤40         | 合格       |
| 20 | ++ ->4 r -> ++                           | 202312260058001  | 0.1L     | 1     | 200       | 6.0         | À 12-    |
| 29 | 苯并[a]蒽                                   | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
| 20 | atte                                     | 20231226005S001  | 0.1L     |       | 3.5       | 100         | A 100    |
| 30 | 崫                                        | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
|    | 邻苯二甲酸二正                                  | 202312260058001  | 0.2L     |       |           | 1.00        | 4.16     |
| 31 | 辛酯                                       | 20231226005S001a | 0.2L     | mg/kg | 0.00      | ≤40         | 合格       |
| 20 | ## 14 ru a ## ##                         | 20231226005S001  | 0.2L     |       | 1.00      | Va          | . 16     |
| 32 | 苯并[b]荧蒽                                  | 20231226005S001a | 0.2L     | mg/kg | 0.00      | ≤40         | 合格       |
|    | # 40 1# #                                | 20231226005S001  | 0.1L     |       |           | 100         |          |
| 33 | 苯并[k]荧蒽                                  | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
|    | ++ 34 c 3++                              | 20231226005S001  | 0.1L     |       |           | 5-14        | A 14     |
| 34 | 苯并[a]芘                                   | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
|    | # 44                                     | 20231226005S001  | 0.1L     |       |           | 100         | 4.16     |
| 35 | 茚并[1,2,3-cd]芘                            | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
| 26 | - # 44 · · · · · · · · · · · · · · · · · | 20231226005S001  | 0.1L     |       | 9.57      | (490        | A 12.    |
| 36 | 二苯并[a,h]蒽                                | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |
|    | ##-3/. 2 #!"                             | 20231226005S001  | 0.1L     |       | CONTRACT. | 1.50        |          |
| 37 | 苯并 (g,h,i) 花                             | 20231226005S001a | 0.1L     | mg/kg | 0.00      | ≤40         | 合格       |

第 19 页 共 38 页



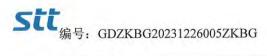
| 序号 | 检测项目  | 样品编号             | 检测<br>结果 | 单位    | 相对偏差% | 允许相对偏<br>差% | 判定结<br>果 |  |
|----|-------|------------------|----------|-------|-------|-------------|----------|--|
| 20 | 20 AH | 20231226005S001  | 37       | /Isa  | 17.5  | <20         | 合格       |  |
| 38 | 锡     | 20231226005S001a | 26       | mg/kg | 17.5  | 520         | 口伯       |  |

#### 表 4.3-6 土壤实验室平行样分析结果及判定表 (1)

| 序号 | 检测项目    | 样品编号              | 检测<br>结果 | 单位 | 绝对偏差 | 允许绝对<br>偏差 | 判定结果  |  |
|----|---------|-------------------|----------|----|------|------------|-------|--|
|    | 干物质 (风  | 20231226005S001   | 99.5     | %  | 0.1  | <±0.2      | 合格    |  |
| 1  | 干)      | 20231226005S001-a | 99.6     | %  | -0.1 | ≥±0.2      | D 111 |  |
|    | LA CARL | 20231226005S001   | 10.5     | %  | 0.0  | <±1.5      | 合格    |  |
| 2  | 水分(湿)   | 20231226005S001-a | 10.5     | 70 | 0.0  | S±1.5      | 口怕    |  |

### 表 4.3-7 土壤实验室平行样分析结果及判定表 (2)

| 序号  | 检测项目              | 样品编号              | 检测<br>结果 | 单位     | 相对偏差% | 允许相对偏<br>差% | 判定结<br>果 |
|-----|-------------------|-------------------|----------|--------|-------|-------------|----------|
|     | 铅                 | 20231226005S001   | 55.5     | ma/lea | 0.36  | ≤30         | 合格       |
| 1   | 和                 | 20231226005S001-a | 55.9     | mg/kg  | 0.30  | 250         | 口加       |
| 2   | 镉                 | 20231226005S001   | 0.18     | ma/lea | 5.88  | ≤30         | 合格       |
| 2   | 押                 | 20231226005S001-a | 0.16     | mg/kg  | 2.00  | 200         | нти      |
| 2   | <b>工油烃 (C C )</b> | 20231226005S001   | 101      | mg/kg  | 0.00  | ≤25         | 合格       |
| 3   | 石油烃 (C10-C40)     | 20231226005S001-a | 101      | mg/kg  | 0.00  | 243         | 11 111   |
| 4   | 铜                 | 20231226005S001   | 7        | mg/kg  | 0.00  | <20         | 合格       |
| 4   | 刊                 | 20231226005S001-a | 7        | mg/kg  | 0.00  | 320         | дли      |
| 5   | 镍                 | 202312260058001   | 14       | ma/lea | 0.00  | <20         | 合格       |
| 2   | 採                 | 20231226005S001-a | 14       | mg/kg  | 0.00  | 320         | птп      |
|     | 铬                 | 20231226005S001   | 19       | ma/lea | 0.00  | <20         | 合格       |
| 6   | 韬                 | 20231226005S001-a | 19       | mg/kg  | 0.00  | 320         | нин      |
| 7   | 锌                 | 20231226005S001   | 90       | ma/ka  | 0.00  | <20         | 合格       |
| /   | 样                 | 20231226005S001-a | 90       | mg/kg  | 0.00  | 320         | ни       |
| 8   | 锰                 | 20231226005S001   | 246      | ma/ka  | 1.80  | <30         | 合格       |
| 8   | †ín               | 20231226005S001-a | 255      | mg/kg  | 1.60  | 720         | шти      |
| 9   | 锑                 | 20231226005S001   | 0.3L     | mg/kg  | 0.00  | <40         | 合格       |
| 9   | T/H               | 20231226005S001-a | 0.3L     | mg/kg  | 0.00  | 240         | нин      |
| 10  | 苯                 | 20231226005S001   | 1.9L     | μg/kg  | 0.00  | ≤25         | 合格       |
| 10  | 4                 | 20231226005S001-a | 1.9L     | µg/kg  | 0.00  | 323         | шти      |
| 1.1 | 甲苯                | 20231226005S001   | 1.3L     | ug/lea | 0.00  | <25         | 合格       |
| 11  | 十本                | 20231226005S001-a | 1.3L     | μg/kg  | 0.00  | 263         | птп      |
| 12  | 乙苯                | 20231226005S001   | 1.2L     | ug/kg  | 0.00  | ≤25         | 合格       |
| 12  | △本                | 20231226005S001-a | 1.2L     | μg/kg  | 0.00  | 243         | HT H     |


广东中科检测技术股份有限公司

第 20 页 共 38 页

Guangdong Sino-Sci Testing Technology Corporation Limited

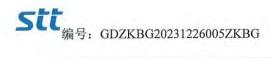


| 序号  | 检测项目         | 样品编号              | 检测<br>结果 | 单位     | 相对偏差%          | 允许相对偏<br>差% | 判定结果    |
|-----|--------------|-------------------|----------|--------|----------------|-------------|---------|
| 13  | 间二甲苯+对二甲     | 20231226005S001   | 1.2L     |        | 0.00           | -05         | V 14    |
| 15  | 苯            | 20231226005S001-a | 1.2L     | μg/kg  | 0.00           | ≤25         | 合格      |
| 14  | 邻-二甲苯        | 20231226005S001   | 1.2L     |        | 0.00           | 10.5        | V 14    |
| 14  | 初-二中本        | 20231226005S001-a | 1.2L     | μg/kg  | 0.00           | ≤25         | 合格      |
| 15  | サフ   経       | 20231226005S001   | 1.1L     |        | 0.00           | -0.5        | A 14    |
| 15  | 苯乙烯          | 20231226005S001-a | 1.1L     | μg/kg  | 0.00           | ≤25         | 合格      |
| 10  | Zeh          | 20231226005S001   | 3.37     |        | 0.00           | 775.4       | A 14    |
| 16  | 砷            | 20231226005S001-a | 3.37     | mg/kg  | 0.00           | ≤15         | 合格      |
|     | -            | 20231226005S001   | 0.064    | 15.0   |                | 7-10        |         |
| 17  | 汞            | 20231226005S001-a | 0.062    | mg/kg  | 1.59           | ≤30         | 合格      |
|     | ₩ 11. H/m    | 20231226005S001   | 650      | 10.40  | 2.42           |             |         |
| 18  | 氟化物          | 20231226005S001-a | 621      | mg/kg  | 2.28           | ≤10         | 合格      |
|     | 44           | 20231226005S001   | 0.09L    |        | 73             | I Just I    | 4.77    |
| 19  | 萘            | 20231226005S001-a | 0.09L    | mg/kg  | 0.00           | ≤40         | 合格      |
|     | 46.100       | 20231226005S001   | 0.09L    |        | 7.50           | 1 227       |         |
| 20  | 苊烯           | 20231226005S001-a | 0.09L    | mg/kg  | 0.00           | ≤40         | 合格      |
|     | - 46         | 20231226005S001   | 0.1L     | T      | 16.55          | 1.1.        | 2.0     |
| 21  | 苊            | 20231226005S001-a | 0.1L     | mg/kg  | 0.00           | ≤40         | 合格      |
|     | 260          | 20231226005S001   | 0.8L     |        | 12.66          | 1.4         | 7.00    |
| 22  | 芴            | 20231226005S001-a | 0.8L     | mg/kg  | 0.00           | ≤40         | 合格      |
| 24  | -11-         | 20231226005S001   | 0.1L     | 1      | Live V         | 1.54        | 100.00  |
| 23  | 菲            | 20231226005S001-a | 0.1L     | mg/kg  | 0.00           | ≤40         | 合格      |
| 2.0 | -84-         | 20231226005S001   | 0.1L     |        | 51105          |             | 1.10    |
| 24  | 蒽            | 20231226005S001-a | 0.1L     | mg/kg  | 0.00           | ≤40         | 合格      |
| 0.  | 邻苯二甲酸(2-二    | 20231226005S001   | 0.1L     |        | 1000           | Sola        |         |
| 25  | 乙基己基) 酯      | 20231226005S001-a | 0.1L     | mg/kg  | 0.00           | ≤40         | 合格      |
|     |              | 20231226005S001   | 0.2L     |        |                |             |         |
| 26  | 荧蒽           | 20231226005S001-a | 0.2L     | mg/kg  | 0.00           | ≤40         | 合格      |
|     |              | 20231226005S001   | 0.1L     |        | 70.40          | 11 24 -     | 2.2     |
| 27  | 芘            | 20231226005S001-a | 0.1L     | mg/kg  | 0.00           | ≤40         | 合格      |
|     | 邻苯二甲酸丁基      | 20231226005S001   | 0.2L     | 1-16-1 | Transaction of | 265         | S. V.   |
| 28  | 苄基酯          | 20231226005S001-a | 0.2L     | mg/kg  | 0.00           | ≤40         | 合格      |
|     | AL V 1 - III | 20231226005S001   | 0.1L     |        | 3 69 1         |             | 5.02    |
| 29  | 苯并[a]蒽       | 20231226005S001-a | 0.1L     | mg/kg  | 0.00           | ≤40         | 合格      |
|     |              | 20231226005S001   | 0.1L     |        | 75.5           |             | 19.00.1 |
| 30  | 崫            | 20231226005S001-a | 0.1L     | mg/kg  | 0.00           | ≤40         | 合格      |
| 31  | 邻苯二甲酸二正      | 20231226005S001   | 0.2L     | mg/kg  | 0.00           | ≤40         | 合格      |

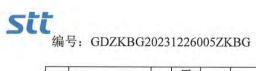


| 序号 | 检测项目          | 样品编号                    | 检测<br>结果 | 单位      | 相对偏差% | 允许相对偏<br>差% | 判定结<br>果 |  |
|----|---------------|-------------------------|----------|---------|-------|-------------|----------|--|
|    | 辛酯            | 20231226005S001-a       | 0.2L     |         |       |             |          |  |
|    | ***           | 20231226005S001         | 0.2L     |         | 0.00  | <40         | 合格       |  |
| 32 | 苯并[b]荧蒽       | 20231226005S001-a       | 0.2L     | mg/kg   | 0.00  | ≥40         | 口竹       |  |
|    | ****          | 202312260058001         | 0.1L     |         | 0.00  | <40         | 合格       |  |
| 33 | 苯并[k]荧蒽       | 20231226005S001-a       | 0.1L     | mg/kg   | 0.00  | ≥40         | D 110    |  |
|    | ht 34 r 3 tt  | 202312260058001         | 0.1L     | /l      | 0.00  | ≤40         | 合格       |  |
| 34 | 苯并[a]芘        | 20231226005S001-a       | 0.1L     | mg/kg   | 0.00  | ≥40         | D 111    |  |
| 25 | ####          | 20231226005S001         | 0.1L     |         | 0.00  | ≤40         | 合格       |  |
| 35 | 茚并[1,2,3-cd]芘 | 20231226005S001-a       | 0.1L     | mg/kg   | 0.00  | 240         | HI H     |  |
| 26 | 一 + 1 7 - 市   | 20231226005S001         | 0.1L     | ma/lea  | 0.00  | <40         | 合格       |  |
| 36 | 二苯并[a,h]蒽     | 20231226005S001-a       | 0.1L     | mg/kg   | 0.00  | 240         | D 111    |  |
| 27 | **            | 20231226005S001         | 0.1L     | m a/lea | 0.00  | <40         | 合格       |  |
| 37 | 苯并 (g,h,i) 苝  | 20231226005S001-a       | 0.1L     | mg/kg   | 0.00  | ≥40         | II AII   |  |
| 20 | 左目            | H20231229005101-<br>01  | 37.4     | ma/ka   | 0.13  | <20         | 合格       |  |
| 38 | 88 锡          | H20231229005101-<br>01P | 37.3     | mg/kg   | 0.13  |             | ប់ការ    |  |

### 表 4.3-8 地下水现场平行样分析结果及判定表


| 序号 | 检测项目      | 样品个数 | 平行样个数 | 比例% | 样品编号             | 检测<br>结果 | 单位   | 相对偏差% | 允许<br>相对<br>偏差<br>% | 判定结果 |
|----|-----------|------|-------|-----|------------------|----------|------|-------|---------------------|------|
|    | ₩ /1. dbm |      |       | 25  | 20231226005W001  | 0.27     | 77   | 0.00  | <10                 | 合    |
| 1  | 氟化物       | 4    | 1     | 25  | 20231226005W001a | 0.27     | mg/L | 0.00  | ≤10                 | 格    |
|    | r.h       |      |       | 25  | 20231226005W001  | 0.3L     | /T   | 0.00  | -20                 | 合    |
| 2  | 砷         | 4    | 1     | 25  | 20231226005W001a | 0.3L     | μg/L | 0.00  | ≤20                 | 格    |
|    | -         |      |       | 25  | 20231226005W001  | 0.04L    | /T   | 0.00  | <b>~20</b>          | 合    |
| 3  | 汞         | 4    | 1     | 25  | 20231226005W001a | 0.04L    | μg/L | 0.00  | ≤20                 | 格    |
| ,  | April Day |      |       | 25  | 20231226005W001  | 0.184    | /T   | 0.55  | ≤15                 | 合    |
| 4  | 氨氮        | 4    | 1     | 25  | 20231226005W001a | 0.182    | mg/L | 0.55  | 712                 | 格    |
| _  | bn.       | 7    |       | 25  | 20231226005W001  | 0.19     | ∞/Т  | 9.52  | ≤20                 | 合    |
| 5  | 铅         | 4    | 1     | 25  | 20231226005W001a | 0.23     | μg/L | 9.52  | ≥20                 | 格    |
| ,  | 邻苯二甲酸二    |      |       | 25  | 20231226005W001  | 0.2L     | ua/I | 0.00  | ≤10                 | 合    |
| 6  | 辛脂        | 4    | 1     | 25  | 20231226005W001a | 0.2L     | μg/L | 0.00  | ≥10                 | 格    |
|    | #1        |      |       | 25  | 20231226005W001  | 0.69     | /1   | 2.13  | <20                 | 合    |
| 7  | 铜         | 4    | 1     | 25  | 20231226005W001a | 0.72     | μg/L | 2.13  | ≤20                 | 格    |
|    | F-白       |      |       | 25  | 20231226005W001  | 0.06L    | /T   | 0.00  | <i>-20</i>          | 合    |
| 8  | 镍         | 4    | 1     | 25  | 20231226005W001a | 0.06L    | μg/L | 0.00  | ≤20                 | 格    |

第 22 页 共 38 页




| 序号 | 检测项目             | 样品个数 | 平行样个数 | 比例% | 样品编号                  | 检测结果                      | 单位   | 相对偏差% | 允许相对偏差% | 判定结果 |
|----|------------------|------|-------|-----|-----------------------|---------------------------|------|-------|---------|------|
| 9  | 镉                | 4    | 1     | 25  | 20231226005W001       | 0.05L                     | , /r | 0.00  | <00     | 合    |
| 9  | THY              | 4    | 1     | 23  | 20231226005W001a      | 0.05L                     | μg/L | 0.00  | ≤20     | 格    |
| 10 | 铬                | 4    | 1     | 25  | 20231226005W001       | 0.14                      | /T   | 12.0  | -20     | 合    |
| 10 | FIT              | 4    | 1     | 23  | 20231226005W001a      | 0.11                      | μg/L | 12.0  | ≤20     | 格    |
| 11 | 锡                | 4    | 1     | 25  | 20231226005W001       | 0.08L                     | ug/I | 0.00  | -20     | 合    |
| 11 | 190              | 4    | 1     | 23  | 20231226005W001a      | 0.08L                     | μg/L | 0.00  | ≤20     | 格    |
| 12 | 锑                | 4    | 1     | 25  | 20231226005W001       | 0.26                      | /T   | 1.06  | -20     | 合    |
| 12 | ENI              | 4    | 1     | 23  | 20231226005W001a      | 0.25                      | μg/L | 1.96  | ≤20     | 格    |
| 13 | 锰                | 4    | 1     | 25  | 20231226005W001       | 2.49                      | /T   | 0.07  | -20     | 合    |
| 13 | Tim.             | 4    | 1     | 25  | 20231226005W001a      | 2.08                      | μg/L | 8.97  | ≤20     | 格    |
| 14 | 锌                | 4    | 1     | 25  | 20231226005W001       | 2.18                      | /T   | 4.20  | <00     | 合    |
| 14 | **               | 4    | 1     | 25  | 20231226005W001a      | 2.38                      | μg/L | 4.39  | ≤20     | 格    |
| 15 | 苯                | 4    | 1     | 25  | 20231226005W001       | 1.4L                      | /T   | 0.00  | -20     | 合    |
| 15 | 4                | 4    | 1     | 25  | 20231226005W001a 1.4L |                           | μg/L | 0.00  | ≤30     | 格    |
| 16 | 甲苯               | 4    | 1     | 25  | 20231226005W001       | 1.4L                      |      | 0.00  | -20     | 合    |
| 10 | 十本               | 4    | 1     | 25  | 20231226005W001a      | 1.4L                      | μg/L | 0.00  | ≤30     | 格    |
| 17 | 乙苯               | 4    | 1     | 25  | 20231226005W001       | 0.8L                      | IV.  | 0.00  | -20     | 合    |
| 17 | 乙本               | 4    | i     | 25  | 20231226005W001a      | 0.8L                      | μg/L | 0.00  | ≤30     | 格    |
| 18 | 间,对二甲苯           | 4    | 1     | 25  | 20231226005W001       | 2.2L                      | 14   | 0.00  | -0.0    | 合    |
| 10 | 间,对二十本           | 4    | 1     | 25  | 20231226005W001a      | 2.2L                      | μg/L | 0.00  | ≤30     | 格    |
| 19 | 邻-二甲苯            | 4    | ,     | 25  | 20231226005W001       | 1.4L                      | 17   | 0.00  | -20     | 合    |
| 19 | 49-一十本           | 4    | 1     | 25  | 20231226005W001a      | 1.4L                      | μg/L | 0.00  | ≤30     | 格    |
| 20 | 苯乙烯              | 4    | 1     | 25  | 20231226005W001       | 0.6L                      |      | 0.00  | -20     | 合    |
| 40 | 本乙烯              | 4    | 1     | 23  | 20231226005W001a      | 0.6L                      | μg/L | 0.00  | ≤30     | 格    |
| 21 | 邻苯二甲酸丁           | 4    | 1     | 25  | 20231226005W001       | 2.5×10 <sup>-4</sup><br>L | mg/L | 0.00  | ≤50     | 合    |
|    | 基苄基酯             |      |       | 20  | 20231226005W001a      | 2.5×10 <sup>-4</sup><br>L | mg/L | 0.00  | 200     | 格    |
| 22 | 邻苯二甲酸二<br>(2-乙基己 | 4    | 1     | 25  | 20231226005W001       | 4.1×10 <sup>-4</sup><br>L | mg/L | 0.00  | ≤50     | 合    |
|    | 基)酯              |      |       | 25  | 20231226005W001a      | 4.1×10 <sup>-4</sup><br>L | mg/L | 0.00  | 230     | 格    |

表 4.3-9 地下水实验室平行样分析结果及判定表



| 序号 | 检测项目              | 样品个数 | 平行样个数 | 比例%  | 样品编号              | 检测结果  | 单位    | 相对偏<br>差% | 允许<br>相对<br>偏差<br>% | 判定结果 |
|----|-------------------|------|-------|------|-------------------|-------|-------|-----------|---------------------|------|
|    | 与 //e #dm         |      | 1     | 25   | 20231226005W001   | 0.27  | m a/I | 3.57      | ≤10                 | 合    |
| 1  | 氟化物               | 4    | 1     | 25   | 20231226005W001-a | 0.29  | mg/L  | 3.37      | ≥10                 | 格    |
| ^  | Trb.              |      | 1     | 25   | 20231226005W001   | 0.3L  | ∞/Т   | 0.00      | <i>(</i> 20         | 合    |
| 2  | 砷                 | 4    | 1     | 25   | 20231226005W001-a | 0.3L  | μg/L  | 0.00      | ≤20                 | 格    |
|    | -                 |      |       | 25   | 20231226005W001   | 0.04L | /T    | 0.00      | -20                 | 合    |
| 3  | 汞                 | 4    | 1     | 25   | 20231226005W001-a | 0.04L | μg/L  | 0.00      | ≤20                 | 格    |
|    |                   |      |       |      | 20231226005W001   | 0.184 | Tr.   | 0.12      | -15                 | 合    |
| 4  | 氨氮                | 4    | 1     | 25   | 20231226005W001-a | 0.192 | mg/L  | 2.13      | ≤15                 | 格    |
| _  | 40                |      | FQ.   |      | 20231226005W001   | 0.19  | 17    | 0.00      | -20                 | 合    |
| 5  | 铅                 | 4    | 1     | 25   | 20231226005W001-a | 0.19  | μg/L  | 0.00      | ≤20                 | 格    |
| 4  | 石油烃               |      | 1     | 22   | 20231226005W001   | 0.35  |       | 44.4      | -20                 | 合    |
| 6  | $(C_{10}-C_{40})$ | 4    | 1     | 25   | 20231226005W001-a | 0.38  | mg/L  | 4.11      | ≤20                 | 格    |
|    | 1.2               |      |       | 100  | 20231226005W001   | 0.69  | 1.3   |           | -20                 | 合    |
| 7  | 铜                 | 4    | 1     | 25   | 20231226005W001-a | 0.70  | μg/L  | 0.72      | ≤20                 | 格    |
|    |                   |      |       | 1.50 | 20231226005W001   | 0.06L |       |           |                     | 合    |
| 8  | 镍                 | 4    | 1     | 25   | 20231226005W001-a | 0.06L | μg/L  | 0.00      | ≤20                 | 格    |
|    |                   |      | 0.7   | 7.50 | 20231226005W001   | 0.05L |       | 4.021     | 7.00                | 合    |
| 9  | 镉                 | 4    | 1     | 25   | 20231226005W001-a | 0.05L | μg/L  | 0.00      | ≤20                 | 格    |
|    |                   |      |       | 135  | 20231226005W001   | 0.14  |       |           | -0.0                | 合    |
| 10 | 铬                 | 4    | 1     | 25   | 20231226005W001-a | 0.12  | μg/L  | 7.69      | ≤20                 | 格    |
|    |                   |      |       |      | 20231226005W001   | 0.08L |       | 0.00      | -00                 | 合    |
| 11 | 锡                 | 4    | 1     | 25   | 20231226005W001-a | 0.08L | μg/L  | 0.00      | ≤20                 | 格    |
|    |                   |      |       | 1265 | 20231226005W001   | 0.26  | -     |           |                     | 合    |
| 12 | 锑                 | 4    | 1     | 25   | 20231226005W001-a | 0.26  | μg/L  | 0.00      | ≤20                 | 格    |
|    |                   |      |       | la.  | 20231226005W001   | 2.49  |       | 141       | 124                 | 合    |
| 13 | 锰                 | 4    | 1     | 25   | 20231226005W001-a | 2.26  | μg/L  | 4.84      | ≤20                 | 格    |
|    |                   |      |       | 1.65 | 20231226005W001   | 2.18  |       |           |                     | 合    |
| 14 | 锌                 | 4    | 1     | 25   | 20231226005W001-a | 2.13  | μg/L  | 1.16      | ≤20                 | 格    |
|    |                   |      |       | 193  | 20231226005W001   | 1.4L  | Lag.  |           | 242                 | 合    |
| 15 | 苯                 | 4    | 1     | 25   | 20231226005W001-a | 1.4L  | μg/L  | 0.00      | ≤30                 | 格    |
|    |                   |      |       |      | 20231226005W001   | 1.4L  |       | 14.16.4   |                     | 合    |
| 16 | 甲苯                | 4    | 1     | 25   | 20231226005W001-a | 1.4L  | μg/L  | 0.00      | ≤30                 | 格    |
|    |                   |      |       | 1    | 20231226005W001   | 0.8L  |       |           | 100                 | 合    |
| 17 | 乙苯                | 4    | 1     | 25   | 20231226005W001-a | 0.8L  | μg/L  | 0.00      | ≤30                 | 格    |
| 18 | 间,对二甲苯            | 4    | 1     | 25   | 20231226005W001   | 2.2L  | μg/L  | 0.00      | ≤30                 | 合    |



| 19 20 21 22 22 23 24 25                | 邻-二甲苯<br>苯乙烯<br>萘<br>苊         | 4 4 | 1 | 25  | 20231226005W001-a<br>20231226005W001 | 2.2L<br>1.4L |        |         |       |   |
|----------------------------------------|--------------------------------|-----|---|-----|--------------------------------------|--------------|--------|---------|-------|---|
| 220<br>221<br>222<br>223<br>224<br>225 | 苯乙烯<br>萘<br>苊                  | 4   |   |     |                                      | 1.41         |        |         |       | 格 |
| 220<br>221<br>222<br>223<br>224<br>225 | 苯乙烯<br>萘<br>苊                  | 4   |   |     | 2022122600511621                     | 1.41         |        |         |       | 合 |
| 21<br>22<br>23<br>24<br>25             | 萘                              |     | 1 | 25  | 20231226005W001-a                    | 1.4L         | μg/L   | 0.00    | ≤30   | 格 |
| 21<br>22<br>23<br>24<br>25             | 萘                              |     | 1 |     | 20231226005W001                      | 0.6L         |        | 0.00    | -20   | 合 |
| 22<br>23<br>24<br>25                   | 苊                              | 4   |   | 25  | 20231226005W001-a                    | 0.6L         | μg/L   | 0.00    | ≤30   | 格 |
| 22<br>23<br>24<br>25                   | 苊                              | 4   |   | 0.5 | 20231226005W001                      | 0.012L       |        |         |       | 合 |
| 23 24 25                               |                                |     | 1 | 25  | 20231226005W001-a                    | 0.012L       | μg/L   | 0.00    | ≤10   | 格 |
| 23 24 25                               |                                |     |   |     | 20231226005W001                      | 0.005L       |        |         |       | 合 |
| 24                                     | 茄                              | 4   | 1 | 25  | 20231226005W001-a                    | 0.005L       | μg/L   | 0.00    | ≤10   | 格 |
| 24                                     |                                |     |   |     | 20231226005W001                      | 0.013L       |        | 1000    | 1.72  | 合 |
| 25                                     | 90                             | 4   | 1 | 25  | 20231226005W001-a                    | 0.013L       | μg/L   | 0.00    | ≤10   | 格 |
| 25                                     | ++- b×                         |     | - |     | 20231226005W001                      | 0.008L       |        |         | -     | 合 |
|                                        | 苊烯                             | 4   | 1 | 25  | 20231226005W001-a                    | 0.008L       | μg/L   | 0.00    | ≤10   | 格 |
|                                        | -++                            |     |   | 122 | 20231226005W001                      | 0.012L       | 1.00   | 27537   | 100   | 合 |
|                                        | 菲                              | 4   | 1 | 25  | 20231226005W001-a                    | 0.012L       | μg/L   | 0.00    | ≤10   | 格 |
|                                        | attr.                          |     |   |     | 20231226005W001                      | 0.004L       |        | 45.0    | 10.75 | 合 |
| 26                                     | 蒽                              | 4   | 1 | 25  | 20231226005W001-a                    | 0.004L       | μg/L   | 0.00    | ≤10   | 格 |
| 22                                     | ette ette                      |     |   | 0.5 | 20231226005W001                      | 0.005L       |        |         | 1.3   | 合 |
| 27                                     | 荧蒽                             | 4   | 1 | 25  | 20231226005W001-a                    | 0.005L       | μg/L   | 0.00    | ≤10   | 格 |
| 20                                     | -11-                           |     |   | 0.5 | 20231226005W001                      | 0.016L       |        | 2.2     | - 22  | 合 |
| 28                                     | 芘                              | 4   | 1 | 25  | 20231226005W001-a                    | 0.016L       | μg/L   | 0.00    | ≤10   | 格 |
| 20                                     | +                              |     |   |     | 20231226005W001                      | 0.012L       |        | 10.25   |       | 合 |
| 29                                     | 苯并 (a) 蒽                       | 4   | 1 | 25  | 20231226005W001-a                    | 0.012L       | μg/L   | 0.00    | ≤10   | 格 |
| 20                                     | +tr                            |     |   |     | 20231226005W001                      | 0.005L       | To see |         | 653   | 合 |
| 30                                     | 崫                              | 4   | 1 | 25  | 20231226005W001-a                    | 0.005L       | μg/L   | 0.00    | ≤10   | 格 |
|                                        | th V. c. S. there              |     |   | -32 | 20231226005W001                      | 0.004L       |        | 13.43   |       | 合 |
| 31   3                                 | 苯并(b) 荧蒽                       | 4   | 1 | 25  | 20231226005W001-a                    | 0.004L       | μg/L   | 0.00    | ≤10   | 格 |
|                                        | ++ <sup>1</sup> / <sub>2</sub> |     |   |     | 20231226005W001                      | 0.004L       |        |         |       | 合 |
| 32   \$                                | 苯并(k)荧蒽                        | 4   | 1 | 25  | 20231226005W001-a                    | 0.004L       | μg/L   | 0.00    | ≤10   | 格 |
|                                        | #** / > #*                     |     |   |     | 20231226005W001                      | 0.004L       |        | 72.4    |       | 合 |
| 33                                     | 苯并(a) 芘                        | 4   | 1 | 25  | 20231226005W001-a                    | 0.004L       | μg/L   | 0.00    | ≤10   | 格 |
| . =                                    | 二苯并 (a,h)                      |     |   | 1   | 20231226005W001                      | 0.003L       | 1.24   | - Arada | 70.00 | 合 |
| 34                                     | 蔥                              | 4   | 1 | 25  | 20231226005W001-a                    | 0.003L       | μg/L   | 0.00    | ≤10   | 格 |
| 35                                     |                                | 4   |   |     | 20231226005W001                      | 0.005L       |        |         |       | 合 |



| 序号 | 检测项目            | 样品个数     | 平行样个数 | 比例%   | 样品编号                    | 检测结果                      | 单位                      | 相对偏差%                          | 允许<br>相对<br>偏差<br>% | 判定结果 |     |   |  |
|----|-----------------|----------|-------|-------|-------------------------|---------------------------|-------------------------|--------------------------------|---------------------|------|-----|---|--|
| 20 | 茚并              | 4        |       | 25    | 20231226005W001         | 0.005L                    | /T                      | 0.00                           | ≤10                 | 合    |     |   |  |
| 36 | (1,2,3-c,d) 芘   | 4        | 1     | 25    | 20231226005W001-a       | 0.005L                    | μg/L                    | 0.00                           | ≥10                 | 格    |     |   |  |
|    | 邻苯二甲酸二          |          |       | 25    | 20231226005W001         | 0.2L                      |                         | 0.00                           | ≤10                 | 合    |     |   |  |
| 37 | 37 辛脂           | x—   4   |       | 25    | 20231226005W001-a       | 0.2L                      | μg/L                    | 0.00                           | ≥10                 | 格    |     |   |  |
| 20 | 邻苯二甲酸丁          |          |       | 26    | H20231229005108-0       | 2.5×10 <sup>-4</sup><br>L | /T                      | 0.00                           | <50                 | 合    |     |   |  |
| 38 | 基苄基酯            | 4        | 1     | 25    | H20231229005108-0<br>1P | 2.5×10 <sup>-4</sup><br>L | mg/L                    | 0.00                           | 230                 | 格    |     |   |  |
| 20 | 邻苯二甲酸二          |          |       | 26    | H20231229005108-0<br>1  | 4.1×10 <sup>-4</sup><br>L | m a/I                   | 0.00                           | <b>≤50</b>          | 合    |     |   |  |
| 39 | 9 (2-乙基己<br>基)酯 | (2-乙基己 4 |       | 4   1 |                         | 25                        | H20231229005108-0<br>1P | 4.1×10 <sup>-4</sup> mg/L<br>L |                     | 0.00 | ≥30 | 格 |  |

#### 4.3.4 准确度控制

#### 4.3.4.1 使用标准物质或质控样品

每批次至少测试一个与待测样品浓度相近的有证标准样品。有证标准样品的测定浓度应落在保证值(含不确定度)范围之内,否则本批结果无效,需重新分析测定。有证标准物质样品的结果统计见表 4.3-10 至 4.3-11。

表 4.3-10 土壤有证标准物质样品分析结果

| 序号 | 标样编号                        | 检测项目 | 单位    | 检测结果 | 标准值不确定度   | 是否合格 |
|----|-----------------------------|------|-------|------|-----------|------|
| 1  | GBW07405 GSS-5              | 铅    | mg/kg | 549  | 552±29    | 合格   |
| 2  | GBW07405 GSS-5              | 镉    | mg/kg | 0.40 | 0.45±0.06 | 合格   |
| 3  | GBW07405 GSS-5              | 铜    | mg/kg | 145  | 144±6     | 合格   |
| 4  | GBW07405 GSS-5              | 镍    | mg/kg | 42   | 40±4      | 合格   |
| 5  | GBW07405 GSS-5              | 铬    | mg/kg | 114  | 118±7     | 合格   |
| 6  | GBW07405 GSS-5              | 锌    | mg/kg | 500  | 494±25    | 合格   |
| 7  | GBW07430 GSS-16             | 氟化物  | mg/kg | 812  | 790±44    | 合格   |
| 8  | GBW 07318 GSS-14            | 锰    | mg/kg | 1278 | 1230±82   | 合格   |
| 9  | GBW 07318 GSS-14            | 锑    | mg/kg | 2.8  | 2.7±0.4   | 合格   |
| 10 | GBW07405 GSS-5              | 砷    | mg/kg | 407  | 412±16    | 合格   |
| 11 | GBW07405 GSS-5              | 汞    | mg/kg | 0.29 | 0.29±0.03 | 合格   |
| 12 | GBW07536-GBW07573<br>GSS-52 | 锡    | mg/kg | 4.2  | 4.0±0.3   | 合格   |

#### 表 4.3-11 地下水有证标准物质样品分析结果



编号: GDZKBG20231226005ZKBG

| 序号 | 标样编号                    | 检测项目 | 单位   | 检测结果 | 标准值不确定度        | 是否合格 |
|----|-------------------------|------|------|------|----------------|------|
| 1  | BY400026/B21070347      | 耗氧量  | mg/L | 2.57 | 2.36±0.27      | 合格   |
| 2  | BYT400020/B23020314     | 铅    | μg/L | 805  | 758±53         | 合格   |
| 3  | BYT400020/B23020314     | 铜    | μg/L | 593  | 595±31         | 合格   |
| 4  | BYT400020/B23020314     | 镍    | μg/L | 687  | 715±35         | 合格   |
| 5  | BYT400020/B23020314     | 镉    | μg/L | 114  | 120±10         | 合格   |
| 6  | BYT400020/B23020314     | 铬    | μg/L | 545  | 563±32         | 合格   |
| 7  | BYT400020/B23020314     | 锌    | μg/L | 247  | 264±26         | 合格   |
| 8  | BY400002/B22110248      | 锡    | μg/L | 1972 | 1950±100       | 合格   |
| 9  | BY400043/B22030237      | 锑    | μg/L | 15.6 | $16.3 \pm 0.9$ | 合格   |
| 10 | GSB 07-3183-2014 202315 | 锰    | μg/L | 1404 | 1410±50        | 合格   |
| 11 | BY400012/B22040235      | 氨氮   | mg/L | 17.3 | 17.7±0.8       | 合格   |
| 12 | GSB07-3171-2014/200458  | 砷    | μg/L | 28.2 | 29.0±2.2       | 合格   |
| 13 | GSB07-3173-2014/202059  | 汞    | μg/L | 3.29 | 3.46±0.27      | 合格   |

#### 4.3.4.2 样品加标回收率

依据技术规定, 当没有合适的土壤或地下水基体有证标准物质时,对可以进行加标试验的指标采用样品基体加标回收或空白基体加标试验对准确度进行控制。 回收率 (R) 计算公式为:

R (%) = (加标后测定值 - 基体测定值) /加标值×100%

若加标回收率在规定的允许范围或参考范围内,则该加标回收率试验样品的准确 度控制为合格,否则为不合格。

本次项目样品加标回收率统计见附表 4.3-12 至 4.3-18。

表 4.3-12 土壤加标回收分析结果 (1)

| 序号 | 样品编号                    | 检测项目          | 单位 | 基体测定值 | 加标后测定值  | 加标值 | 回收率 (%) | 回收率<br>参考范<br>围(%) | 是否合格 |
|----|-------------------------|---------------|----|-------|---------|-----|---------|--------------------|------|
| 1  | 20231226005S001<br>基体加标 | 苯             | ng | 0.000 | 120.850 | 100 | 121     | 70-130             | 合格   |
| 2  | 20231226005S001<br>基体加标 | 甲苯            | ng | 0.000 | 98.127  | 100 | 98.1    | 70-130             | 合格   |
| 3  | 20231226005S001<br>基体加标 | 乙苯            | ng | 0.000 | 103.508 | 100 | 104     | 70-130             | 合格   |
| 4  | 20231226005S001<br>基体加标 | 间二甲苯+<br>对二甲苯 | ng | 0.000 | 227.415 | 200 | 114     | 70-130             | 合格   |
| 5  | 20231226005S001<br>基体加标 | 邻-二甲苯         | ng | 0.000 | 108.910 | 100 | 109     | 70-130             | 合    |

广东中科检测技术股份有限公司

第 27 页 共 38 页

Guangdong Sino-Sci Testing Technology Corporation Limited



| 序号 | 样品编号                     | 检测项目                                       | 单位 | 基体测定值    | 加标后测定值   | 加标值 | 回收率 (%) | 回收率<br>参考范<br>围(%) | 是否合格 |
|----|--------------------------|--------------------------------------------|----|----------|----------|-----|---------|--------------------|------|
|    |                          |                                            |    |          |          |     |         |                    | 格    |
| 6  | 20231226005S001<br>基体加标  | 苯乙烯                                        | ng | 0.000    | 110.347  | 100 | 110     | 70-130             | 合格   |
| 7  | 空白加标                     | 苯                                          | ng | 0.000    | 294.873  | 250 | 118     | 70-130             | 合格   |
| 8  | 空白加标                     | 甲苯                                         | ng | 0.000    | 242.833  | 250 | 97.1    | 70-130             | 合格   |
| 9  | 空白加标                     | 乙苯                                         | ng | 0.000    | 267.948  | 250 | 107     | 70-130             | 合格   |
| 10 | 空白加标                     | 间二甲苯+<br>对二甲苯                              | ng | 0.000    | 591.369  | 500 | 118     | 70-130             | 合格   |
| 11 | 空白加标                     | 邻-二甲苯                                      | ng | 0.000    | 282.041  | 250 | 113     | 70-130             | 合格   |
| 12 | 空白加标                     | 苯乙烯                                        | ng | 0.000    | 281.777  | 250 | 113     | 70-130             | 合格   |
| 13 | 0104-石油烃-空白<br>加标        | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | μд | 0.0000   | 679.5533 | 620 | 110     | 70-120             | 合格   |
| 14 | 20231226005S004<br>基体加标  | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | μg | 306.9768 | 389.7827 | 310 | 86.4    | 70-120             | 合格   |
| 15 | 20231226005S001-<br>基体加标 | 萘                                          | μg | 0.000    | 3.677    | 5   | 73.5    | 39-95              | 合格   |
| 16 | 20231226005S001-<br>基体加标 | 苊烯                                         | μg | 0.000    | 4.078    | 5   | 81.6    | 56-92              | 合格   |
| 17 | 20231226005S001-<br>基体加标 | 苊                                          | μg | 0.000    | 4.130    | 5   | 82.6    | 36-104             | 合格   |
| 18 | 20231226005S001-<br>基体加标 | 芴                                          | μg | 0.000    | 4.200    | 5   | 84.0    | 71-95              | 合格   |
| 19 | 20231226005S001-<br>基体加标 | 菲                                          | μg | 0.000    | 4.170    | 5   | 83.4    | 60-140             | 合格   |
| 20 | 20231226005S001<br>基体加标  | 蒽                                          | μg | 0.000    | 4.269    | 5   | 85.4    | 65-101             | 合格   |
| 21 | 20231226005S001<br>基体加标  | 邻苯二甲酸<br>(2-二乙基<br>己基)酯                    | μg | 0.000    | 4.168    | 5   | 83.4    | 29-165             | 合格   |
| 22 | 20231226005S001<br>基体加标  | 荧蒽                                         | μg | 0.000    | 4.305    | 5   | 86.1    | 63-121             | 合格   |
| 23 | 20231226005S001<br>基体加标  | 芘                                          | μg | 0.000    | 4.425    | 5   | 88.5    | 77-117             | 合格   |
| 24 | 20231226005S001<br>基体加标  | 邻苯二甲酸<br>丁基苄基酯                             | μg | 0.000    | 4.108    | 5   | 82.2    | 60-132             | 合格   |
| 25 | 20231226005S001<br>基体加标  | 苯并[a]蒽                                     | μg | 0.000    | 4.818    | 5   | 96.4    | 73-121             | 合格   |
| 26 | 20231226005S001<br>基体加标  | 蔗                                          | μg | 0.000    | 4.555    | 5   | 91.1    | 54-122             | 合格   |



### 编号: GDZKBG20231226005ZKBG

| 序号 | 样品编号                    | 检测项目                    | 单位 | 基体<br>测定值 | 加标后测定值 | 加标值 | 回收率 (%) | 回收率<br>参考范<br>围(%) | 是否合格 |
|----|-------------------------|-------------------------|----|-----------|--------|-----|---------|--------------------|------|
| 27 | 20231226005S001<br>基体加标 | 邻苯二甲酸<br>二正辛酯           | μg | 0.000     | 4.469  | 5   | 89.4    | 65-137             | 合格   |
| 28 | 20231226005S001<br>基体加标 | 苯并[b]荧蒽                 | μg | 0.000     | 4.212  | 5   | 84.2    | 59-131             | 合格   |
| 29 | 20231226005S001<br>基体加标 | 苯并[k]荧蒽                 | μg | 0.000     | 4.364  | 5   | 87.3    | 74-114             | 合格   |
| 30 | 20231226005S001<br>基体加标 | 苯并[a]芘                  | μg | 0.000     | 3.991  | 5   | 79.8    | 45-105             | 合格   |
| 31 | 20231226005S001<br>基体加标 | 茚并<br>[1,2,3-cd]芘       | μg | 0.000     | 5.123  | 5   | 102     | 52-132             | 合格   |
| 32 | 20231226005S001<br>基体加标 | 二苯并[a,h]<br>蔥           | μg | 0.000     | 4.856  | 5   | 97.1    | 64-128             | 合格   |
| 33 | 20231226005S001<br>基体加标 | 苯并(g,h,i)<br>花          | μg | 0.000     | 4.492  | 5   | 89.8    | 49-125             | 合格   |
| 34 | 1231-SVOC-空白<br>加标      | 萘                       | μg | 0.000     | 3.726  | 5   | 74.5    | 39-95              | 合格   |
| 35 | 1231-SVOC-空白<br>加标      | 苊烯                      | μg | 0.000     | 3,480  | 5   | 69.6    | 56-92              | 合格   |
| 36 | 1231-SVOC-空白<br>加标      | 苊                       | μg | 0.000     | 4.039  | 5   | 80.8    | 36-104             | 合格   |
| 37 | 1231-SVOC-空白<br>加标      | 芴                       | μg | 0.000     | 4.151  | 5   | 83.0    | 71-95              | 合格   |
| 38 | 1231-SVOC-空白<br>加标      | 菲                       | μg | 0.000     | 4.177  | 5   | 83.5    | 60-140             | 合格   |
| 39 | 1231-SVOC-空白<br>加标      | 蒽                       | μg | 0.000     | 4.183  | 5   | 83.7    | 65-101             | 合格   |
| 40 | 1231-SVOC-空白<br>加标      | 邻苯二甲酸<br>(2-二乙基<br>己基)酯 | μg | 0.000     | 4.102  | 5   | 82.0    | 29-165             | 合格   |
| 41 | 1231-SVOC-空白<br>加标      | 荧蒽                      | μg | 0.000     | 4.168  | 5   | 83.4    | 63-121             | 合格   |
| 42 | 1231-SVOC-空白<br>加标      | 芘                       | μg | 0.000     | 4.430  | 5   | 88.6    | 77-117             | 合格   |
| 43 | 1231-SVOC-空白<br>加标      | 邻苯二甲酸<br>丁基苄基酯          | μg | 0.000     | 3.948  | 5   | 79.0    | 60-132             | 合格   |
| 44 | 1231-SVOC-空白<br>加标      | 苯并[a]蒽                  | μg | 0.000     | 4.795  | 5   | 95.9    | 73-121             | 合格   |
| 45 | 1231-SVOC-空白<br>加标      | 崫                       | μg | 0.000     | 4.895  | 5   | 97.9    | 54-122             | 合格   |
| 46 | 1231-SVOC-空白<br>加标      | 邻苯二甲酸<br>二正辛酯           | μg | 0.000     | 4.452  | 5   | 89.0    | 65-137             | 合格   |
| 47 | 1231-SVOC-空白<br>加标      | 苯并[b]荧蒽                 | μg | 0.000     | 4.741  | 5   | 94.8    | 59-131             | 合格   |
| 48 | 1231-SVOC-空白<br>加标      | 苯并[k]荧蒽                 | μg | 0.000     | 4.362  | 5   | 87.2    | 74-114             | 合格   |

广东中科检测技术股份有限公司

第 29 页 共 38 页

Guangdong Sino-Sci Testing Technology Corporation Limited



| 序号 | 样品编号               | 检测项目              | 单位 | 基体测定值 | 加标后测定值 | 加标值 | 回收率 (%) | 回收率<br>参考范<br>围(%) | 是否合格 |
|----|--------------------|-------------------|----|-------|--------|-----|---------|--------------------|------|
| 49 | 1231-SVOC-空白<br>加标 | 苯并[a]芘            | μg | 0.000 | 3.998  | 5   | 80.0    | 45-105             | 合格   |
| 50 | 1231-SVOC-空白<br>加标 | 茚并<br>[1,2,3-cd]芘 | μg | 0.000 | 5,069  | 5   | 101     | 52-132             | 合格   |
| 51 | 1231-SVOC-空白<br>加标 | 二苯并[a,h]<br>蔥     | μg | 0.000 | 5.173  | 5   | 103     | 64-128             | 合格   |
| 52 | 1231-SVOC-空白<br>加标 | 苯并(g,h,i)<br>花    | μg | 0.000 | 4.956  | 5   | 99.1    | 49-125             | 合格   |

#### 表 4.3-13 土壤加标回收分析结果 (2)

| 序号 | 样品编号             | 替代物   | 单位 | 加标测定值   | 标准值     | 回收率% | 回收率参考<br>范围% | 是否合格 |
|----|------------------|-------|----|---------|---------|------|--------------|------|
|    |                  | 二溴氟甲烷 | ng | 322.652 | 250.000 | 129  | 70-130       | 合格   |
| 1  | ВК               | 甲苯-D8 | ng | 242.504 | 250.000 | 97.0 | 70-130       | 合格   |
|    |                  | 4-溴氟苯 | ng | 261.997 | 250.000 | 105  | 70-130       | 合格   |
|    |                  | 二溴氟甲烷 | ng | 321.723 | 250.000 | 129  | 70-130       | 合格   |
| 2  | 空白加标             | 甲苯-D8 | ng | 248.760 | 250.000 | 99.5 | 70-130       | 合格   |
|    |                  | 4-溴氟苯 | ng | 261.713 | 250.000 | 105  | 70-130       | 合格   |
|    |                  | 二溴氟甲烷 | ng | 309.973 | 250.000 | 124  | 70-130       | 合格   |
| 3  | QC               | 甲苯-D8 | ng | 257.334 | 250.000 | 103  | 70-130       | 合格   |
|    |                  | 4-溴氟苯 | ng | 275.389 | 250.000 | 110  | 70-130       | 合格   |
|    |                  | 二溴氟甲烷 | ng | 320.922 | 250.000 | 128  | 70-130       | 合格   |
| 4  | 20231226005S001  | 甲苯-D8 | ng | 244.444 | 250.000 | 97.8 | 70-130       | 合格   |
|    |                  | 4-溴氟苯 | ng | 248.330 | 250.000 | 99.3 | 70-130       | 合格   |
|    | A SHIP OF SHIP   | 二溴氟甲烷 | ng | 306.603 | 250.000 | 123  | 70-130       | 合格   |
| 5  | 20231226005S001- | 甲苯-D8 | ng | 243.123 | 250.000 | 97.2 | 70-130       | 合格   |
|    | a                | 4-溴氟苯 | ng | 233.348 | 250.000 | 93.3 | 70-130       | 合格   |
|    |                  | 二溴氟甲烷 | ng | 314.427 | 250.000 | 126  | 70-130       | 合格   |
| 6  | 20231226005S002  | 甲苯-D8 | ng | 247.249 | 250.000 | 98.9 | 70-130       | 合格   |
|    |                  | 4-溴氟苯 | ng | 232.917 | 250.000 | 93.2 | 70-130       | 合格   |
|    |                  | 二溴氟甲烷 | ng | 321.011 | 250.000 | 128  | 70-130       | 合格   |
| 7  | 20231226005S003  | 甲苯-D8 | ng | 250.032 | 250.000 | 100  | 70-130       | 合格   |
|    |                  | 4-溴氟苯 | ng | 237.317 | 250.000 | 94.9 | 70-130       | 合格   |
|    |                  | 二溴氟甲烷 | ng | 312.069 | 250.000 | 125  | 70-130       | 合格   |
| 8  | 20231226005S004  | 甲苯-D8 | ng | 246.108 | 250.000 | 98.4 | 70-130       | 合格   |
|    |                  | 4-溴氟苯 | ng | 225.066 | 250.000 | 90.0 | 70-130       | 合格   |
|    | ***********      | 二溴氟甲烷 | ng | 314.592 | 250.000 | 126  | 70-130       | 合格   |
| 9  | 20231226005S005  | 甲苯-D8 | ng | 253.445 | 250.000 | 101  | 70-130       | 合格   |


第 30 页 共 38 页



| 序号 | 样品编号                    | 替代物   | 单位 | 加标测定值   | 标准值     | 回收率% | 回收率参考<br>范围% | 是否合格 |
|----|-------------------------|-------|----|---------|---------|------|--------------|------|
|    |                         | 4-溴氟苯 | ng | 224.316 | 250.000 | 89.7 | 70-130       | 合格   |
|    |                         | 二溴氟甲烷 | ng | 322.115 | 250.000 | 129  | 70-130       | 合格   |
| 10 | 20231226005S006         | 甲苯-D8 | ng | 251.314 | 250.000 | 101  | 70-130       | 合格   |
|    |                         | 4-溴氟苯 | ng | 224.243 | 250.000 | 89.7 | 70-130       | 合格   |
|    |                         | 二溴氟甲烷 | ng | 308.470 | 250.000 | 123  | 70-130       | 合格   |
| 11 | 20231226005S001a        | 甲苯-D8 | ng | 233.869 | 250.000 | 93.5 | 70-130       | 合格   |
|    |                         | 4-溴氟苯 | ng | 250.898 | 250.000 | 100  | 70-130       | 合格   |
|    |                         | 二溴氟甲烷 | ng | 320.312 | 250.000 | 128  | 70-130       | 合格   |
| 12 | KB001                   | 甲苯-D8 | ng | 254.588 | 250.000 | 102  | 70-130       | 合格   |
|    |                         | 4-溴氟苯 | ng | 219.521 | 250.000 | 87.8 | 70-130       | 合格   |
|    |                         | 二溴氟甲烷 | ng | 322.831 | 250.000 | 129  | 70-130       | 合格   |
| 13 | KB002                   | 甲苯-D8 | ng | 263.156 | 250.000 | 105  | 70-130       | 合格   |
|    |                         | 4-溴氟苯 | ng | 222.252 | 250.000 | 88.9 | 70-130       | 合格   |
|    |                         | 二溴氟甲烷 | ng | 320.311 | 250.000 | 128  | 70-130       | 合格   |
| 14 | 20231226005S001<br>基体加标 | 甲苯-D8 | ng | 240.254 | 250.000 | 96.1 | 70-130       | 合格   |
|    | THE WHITE               | 4-溴氟苯 | ng | 248.680 | 250.000 | 99.5 | 70-130       | 合格   |

#### 表 4.3-14 地下水加标回收分析结果

| 序号 | 样品编号                    | 检测项目        | 单位 | 基体<br>测定值 | 加标后测定值 | 加标值 | 回收率 (%) | 回收率<br>参考范<br>围(%) | 是否合格 |
|----|-------------------------|-------------|----|-----------|--------|-----|---------|--------------------|------|
| 1  | 空白加标                    | 苯           | μg | 0.00      | 11.912 | 12  | 99.3    | 80-120             | 合格   |
| 2  | 空白加标                    | 甲苯          | μg | 0.00      | 12.344 | 12  | 103     | 80-120             | 合格   |
| 3  | 空白加标                    | 乙苯          | μg | 0.00      | 12.555 | 12  | 105     | 80-120             | 合格   |
| 4  | 空白加标                    | 间,对-二甲苯     | μg | 0.00      | 25.242 | 24  | 105     | 80-120             | 合格   |
| 5  | 空白加标                    | 邻-二甲苯       | μg | 0.00      | 12.278 | 12  | 102     | 80-120             | 合格   |
| 6  | 空白加标                    | 苯乙烯         | μg | 0.00      | 12.442 | 12  | 104     | 80-120             | 合格   |
| 7  | 20231226005W001基<br>体加标 | 苯           | μg | 0.00      | 11.578 | 12  | 96.5    | 60-130             | 合格   |
| 8  | 20231226005W001基<br>体加标 | 甲苯          | μg | 0.00      | 11.948 | 12  | 99.6    | 60-130             | 合格   |
| 9  | 20231226005W001基<br>体加标 | 乙苯          | μg | 0.00      | 12.143 | 12  | 101     | 60-130             | 合格   |
| 10 | 20231226005W001基<br>体加标 | 间,对-二甲<br>苯 | μg | 0.00      | 24.277 | 24  | 101     | 60-130             | 合格   |



| 序号 | 样品编号                     | 检测项目                                       | 单位 | 基体测定值    | 加标后测定值   | 加标值  | 回收率 (%) | 回收率<br>参考范<br>围(%) | 7714 |
|----|--------------------------|--------------------------------------------|----|----------|----------|------|---------|--------------------|------|
| 11 | 20231226005W001基<br>体加标  | 邻-二甲苯                                      | μg | 0.00     | 11.865   | 12   | 98.9    | 60-130             | 有    |
| 12 | 20231226005W001基<br>体加标  | 苯乙烯                                        | μg | 0.00     | 11.743   | 12   | 97.9    | 60-130             | 市林   |
| 13 | 20231226005W001-jb       | 氨氮                                         | μg | 9.215    | 13.772   | 5.00 | 91      | 90-105             | 市市   |
| 14 | 20231226005W001-<br>基体加标 | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | μg | 351.3799 | 616.9591 | 310  | 85.7    | 70-120             | 有    |
| 15 | 0107-石油烃-空白加<br>标        | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | μд | 0.0000   | 536.7705 | 620  | 86.6    | 70-120             | 1    |
| 16 | 空白加标                     | 邻苯二甲酸<br>二辛脂                               | μд | 0.0      | 2.2537   | 3.0  | 75.1    | 70-120             | 有    |
| 17 | 20231226005W001-<br>基体加标 | 邻苯二甲酸<br>二辛脂                               | μg | 0.0      | 2.3516   | 3.0  | 78.4    | 70-120             | 市市   |
| 18 | 1231-空白加标                | 萘                                          | μg | 0        | 1.0442   | 1    | 104     | 60-120             | 1    |
| 19 | 1231-空白加标                | 苊                                          | μg | 0        | 1.0497   | 1    | 105     | 60-120             | 1    |
| 20 | 1231-空白加标                | 芴                                          | μg | 0        | 1.0654   | 1    | 107     | 60-120             | 1    |
| 21 | 1231-空白加标                | 苊烯                                         | μg | 0        | 1.0737   | 1    | 107     | 60-120             | 1    |
| 22 | 1231-空白加标                | 菲                                          | μg | 0        | 1.0604   | 1    | 106     | 60-120             | 1    |
| 23 | 1231-空白加标                | 蒽                                          | μg | 0        | 1.0577   | 1    | 106     | 60-120             | 1    |
| 24 | 1231-空白加标                | 荧蒽                                         | μg | 0        | 1.0191   | 1    | 102     | 60-120             | 市市   |
| 25 | 1231-空白加标                | 芘                                          | μg | 0        | 0.9684   | 1    | 96.8    | 60-120             | 市    |
| 26 | 1231-空白加标                | 苯并 (a) 蒽                                   | μg | 0        | 1.0629   | 1    | 106     | 60-120             | 1    |
| 27 | 1231-空白加标                | 崫                                          | μд | 0        | 0.9449   | 1    | 94.5    | 60-120             | 1 本  |
| 28 | 1231-空白加标                | 苯并(b) 荧<br>蒽                               | μg | 0        | 1.0946   | 1    | 109     | 60-120             | 1 木  |
| 29 | 1231-空白加标                | 苯并(k)荧<br>蒽                                | μд | 0        | 1.0001   | 1    | 100     | 60-120             | 有    |
| 30 | 1231-空白加标                | 苯并 (a) 芘                                   | μg | 0        | 0.9791   | 1    | 97.9    | 60-120             | 市本   |
| 31 | 1231-空白加标                | 二苯并(a,h)<br>蒽                              | μg | 0        | 1.0645   | 1    | 106     | 60-120             | 古木   |
| 32 | 1231-空白加标                | 苯并(g,h,i)<br>花                             | μg | 0        | 1.0513   | 1    | 105     | 60-120             | 台本   |
| 33 | 1231-空白加标                | 茚并                                         | μg | 0        | 1.0931   | 1    | 109     | 60-120             | 1    |



编号: GDZKBG20231226005ZKBG

| 序号 | 样品编号                     | 检测项目                   | 单位 | 基体测定值 | 加标后测定值 | 加标值 | 回收率 (%) | 回收率<br>参考范<br>围(%) | 是否合格 |
|----|--------------------------|------------------------|----|-------|--------|-----|---------|--------------------|------|
|    |                          | (1,2,3-c,d)<br>芘       |    |       |        |     |         |                    | 格    |
| 34 | 20231226005W001-<br>基体加标 | 萘                      | μg | 0     | 1.0562 | 1   | 106     | 60-120             | 合格   |
| 35 | 20231226005W001-<br>基体加标 | 苊                      | μд | 0     | 1.0671 | 1   | 107     | 60-120             | 合格   |
| 36 | 20231226005W001-<br>基体加标 | 芴                      | μg | 0     | 1.0768 | 1   | 108     | 60-120             | 合格   |
| 37 | 20231226005W001-<br>基体加标 | 苊烯                     | μg | 0     | 1.0817 | 1   | 108     | 60-120             | 合格   |
| 38 | 20231226005W001-<br>基体加标 | 菲                      | μg | 0     | 1.0748 | 1   | 107     | 60-120             | 合格   |
| 39 | 20231226005W001-<br>基体加标 | 蒽                      | μg | 0     | 1.0643 | 1   | 106     | 60-120             | 合格   |
| 40 | 20231226005W001-<br>基体加标 | 荧蒽                     | μg | 0     | 1.0589 | 1   | 106     | 60-120             | 合格   |
| 41 | 20231226005W001-<br>基体加标 | 芘                      | μg | 0     | 0.9736 | 1   | 97.4    | 60-120             | 合格   |
| 42 | 20231226005W001-<br>基体加标 | 苯并 (a) 蒽               | μg | 0     | 1.0099 | 1   | 101     | 60-120             | 合格   |
| 43 | 20231226005W001-<br>基体加标 | 崫                      | μg | 0     | 1.0228 | 1   | 102     | 60-120             | 合格   |
| 44 | 20231226005W001-<br>基体加标 | 苯并 (b) 荧<br>蔥          | μg | 0     | 1.0682 | 1   | 107     | 60-120             | 合格   |
| 45 | 20231226005W001-<br>基体加标 | 苯并(k) 荧<br>蒽           | μg | 0     | 1.0265 | 1   | 103     | 60-120             | 合格   |
| 46 | 20231226005W001-<br>基体加标 | 苯并 (a) 芘               | μg | 0     | 0.9674 | 1   | 96.7    | 60-120             | 合格   |
| 47 | 20231226005W001-<br>基体加标 | 二苯并 (a,h) 蒽            | μg | 0     | 1.0267 | 1   | 103     | 60-120             | 合格   |
| 48 | 20231226005W001-<br>基体加标 | 苯并(g,h,i)<br>花         | μg | 0     | 1.0337 | 1   | 103     | 60-120             | 合格   |
| 49 | 20231226005W001-<br>基体加标 | 茚并<br>(1,2,3-c,d)<br>芘 | μg | 0     | 1.0061 | 1   | 101     | 60-120             | 合格   |

#### 4.3.4.3 校准曲线检查

为确保校准曲线的准确性,半挥发性有机物每 24h 分析一次校准曲线中间点浓度, 无机重金属项目每分析 20 个样品或每批次样品,需进行校准曲线中间点浓度测试核查, 其测定值与标准浓度值的相对误差或相对偏差或者测定值与标准值的比值(%)或测定 值与初始测定值的相对偏差需在标准要求范围内,若校准结果不符合方法要求,则应重 新绘制校准曲线。



表 4 3-15 十壤校准曲线中间浓度占分析结果 (1)

| 序号 | 编号               | 8 4.3-15 土壤<br>目标物                         | 单位    | 测定值      | 标准<br>值 | 相对误差(%) | 允许相对误<br>差(%) | 是否 合格 |
|----|------------------|--------------------------------------------|-------|----------|---------|---------|---------------|-------|
| 1  | QC-20.0-1        | 铅                                          | μg/L  | 19.777   | 20.0    | -1.12   | ≤±10          | 合格    |
| 2  | QC-20.0-4        | 铅                                          | μg/L  | 20.968   | 20.0    | 4.84    | ≤±10          | 合格    |
| 3  | QC-1.0-1         | 镉                                          | μg/L  | 0.952    | 1.0     | -4.80   | ≤±10          | 合格    |
| 4  | QC-1.0-4         | 镉                                          | μg/L  | 1.080    | 1.0     | 8.00    | ≤±10          | 合格    |
| 5  | QC-4.0 (μg/L) -1 | 砷                                          | μg/L  | 4.0622   | 4.0     | 1.56    | ≤±10          | 合格    |
| 6  | QC-4.0 (µg/L) -7 | 砷                                          | μg/L  | 3.8284   | 4.0     | -4.29   | ≤±10          | 合格    |
| 7  | QC-0.4 (μg/L) -1 | 汞                                          | μg/L  | 0.4176   | 0.4     | 4.40    | ≤±10          | 合格    |
| 8  | QC-0.4 (μg/L) -6 | 汞                                          | μg/L  | 0.3791   | 0.4     | -5.22   | ≤±10          | 合格    |
| 9  | QC-0.4-1         | 铜                                          | mg/L  | 0.3790   | 0.4     | -5.25   | ≤±10          | 合格    |
| 10 | QC-0.4-5         | 铜                                          | mg/L  | 0.3975   | 0.4     | -0.62   | ≤±10          | 合格    |
| 11 | QC-0.4-1         | 镍                                          | mg/L  | 0.3932   | 0.4     | -1.70   | ≤±10          | 合格    |
| 12 | QC-0.4-5         | 镍                                          | mg/L  | 0.3958   | 0.4     | -1.05   | ≤±10          | 合格    |
| 13 | QC-0.4-1         | 铬                                          | mg/L  | 0.3915   | 0.4     | -2.12   | ≤±10          | 合格    |
| 14 | QC-0.4-3         | 铬                                          | mg/L  | 0.3986   | 0.4     | -0.35   | ≤±10          | 合格    |
| 15 | QC-0.4-1         | 锌                                          | mg/L  | 0.4175   | 0.4     | 4.38    | ≤±10          | 合格    |
| 16 | QC-0.4-3         | 锌                                          | mg/L  | 0.4314   | 0.4     | 7.85    | ≤±10          | 合格    |
| 17 | QC-100-1         | 锰                                          | μg/L  | 103.49   | 100     | 3.49    | ≤±10          | 合格    |
| 18 | QC-100-2         | 锰                                          | μg/L  | 98.591   | 100     | -1.41   | ≤±10          | 合格    |
| 19 | QC-100-1         | 锑                                          | μg/L  | 99.11    | 100     | -0.89   | ≤±10          | 合格    |
| 20 | QC-100-2         | 锑                                          | μg/L  | 91.343   | 100     | -8.66   | ≤±10          | 合格    |
| 21 | 0104-石油烃-QC      | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | μg/mL | 329.3377 | 310     | 6.24    | ≤±10          | 合格    |
| 22 | QC (50.0μg)      | 氟化物                                        | μg    | 49.124   | 50      | -1.75   | ≤±10          | 合格    |
| 23 | 1231-SVOC-QC     | 萘                                          | μg/mL | 4.845    | 4.892   | -0.48   | ≤±30          | 合格    |
| 24 | 1231-SVOC-QC     | 苊烯                                         | μg/mL | 4.628    | 5.053   | -4.39   | ≤±30          | 合格    |
| 25 | 1231-SVOC-QC     | 苊                                          | μg/mL | 4.728    | 5.002   | -2.82   | ≤±30          | 合格    |
| 26 | 1231-SVOC-QC     | 芴                                          | μg/mL | 4.885    | 5.010   | -1.26   | ≤±30          | 合格    |
| 27 | 1231-SVOC-QC     | 菲                                          | μg/mL | 4.812    | 5.050   | -2.41   | ≤±30          | 合格    |
| 28 | 1231-SVOC-QC     | 蒽                                          | μg/mL | 4.760    | 5.001   | -2.47   | ≤±30          | 合格    |
| 29 | 1231-SVOC-QC     | 邻苯二甲酸<br>(2-二乙基<br>己基)酯                    | μg/mL | 4.736    | 4.994   | -2.65   | ≤±30          | 合格    |
| 30 | 1231-SVOC-QC     | 荧蒽                                         | μg/mL | 4.720    | 5.062   | -3.50   | ≤±30          | 合格    |
| 31 | 1231-SVOC-QC     | 芘                                          | μg/mL | 4.793    | 5.027   | -2.38   | ≤±30          | 合格    |
| 32 | 1231-SVOC-QC     | 邻苯二甲酸<br>丁基苄基酯                             | μg/mL | 5.083    | 4.94    | 1.43    | ≤±30          | 合格    |
| 33 | 1231-SVOC-QC     | 苯并[a]蒽                                     | μg/mL | 5.072    | 5.028   | 0.44    | ≤±30          | 合格    |
| 34 | 1231-SVOC-QC     | 崫                                          | μg/mL | 4.822    | 5.061   | -2.42   | ≤±30          | 合格    |

第 34 页 共 38 页



#### 编号: GDZKBG20231226005ZKBG

| 序号 | 编号           | 目标物               | 单位    | 测定值   | 标准<br>值 | 相对误差 (%) | 允许相对误<br>差(%) | 是否 合格 |
|----|--------------|-------------------|-------|-------|---------|----------|---------------|-------|
| 35 | 1231-SVOC-QC | 邻苯二甲酸<br>二正辛酯     | μg/mL | 4.916 | 4.976   | -0.61    | ≤±30          | 合格    |
| 36 | 1231-SVOC-QC | 苯并[b]荧蒽           | μg/mL | 4.985 | 5.089   | -1.03    | ≤±30          | 合格    |
| 37 | 1231-SVOC-QC | 苯并[k]荧蒽           | μg/mL | 5.018 | 5.005   | 0.13     | ≤±30          | 合格    |
| 38 | 1231-SVOC-QC | 苯并[a]芘            | μg/mL | 5.037 | 5.269   | -2.25    | ≤±30          | 合格    |
| 39 | 1231-SVOC-QC | 茚并<br>[1,2,3-cd]芘 | μg/mL | 5.084 | 5.025   | 0.58     | ≤±30          | 合格    |
| 40 | 1231-SVOC-QC | 二苯并[a,h]<br>蒽     | μg/mL | 4.996 | 5.015   | -0.19    | ≤±30          | 合格    |
| 41 | 1231-SVOC-QC | 苯并(g,h,i)<br>花    | μg/mL | 4.899 | 5.061   | -1.63    | ≤±30          | 合格    |

#### 表 4.3-16 土壤校准曲线中间浓度点分析结果 (2)

| 序号 | 编号 | 目标物           | 单位 | 测定值     | 标准值 | 浓度比值(%) | 允许浓度比值(%) | 是否合<br>格 |
|----|----|---------------|----|---------|-----|---------|-----------|----------|
| 1  | QC | 苯             | ng | 292.553 | 250 | 117     | 80-120    | 合格       |
| 2  | QC | 甲苯            | ng | 253.580 | 250 | 101     | 80-120    | 合格       |
| 3  | QC | 乙苯            | ng | 283.553 | 250 | 113     | 80-120    | 合格       |
| 4  | QC | 间二甲苯+对二甲<br>苯 | ng | 598.612 | 500 | 120     | 80-120    | 合格       |
| 5  | QC | 邻二甲苯          | ng | 296.947 | 250 | 119     | 80-120    | 合格       |
| 6  | QC | 苯乙烯           | ng | 296.058 | 250 | 118     | 80-120    | 合格       |

#### 表 4.3-17 地下水校准曲线中间浓度点分析结果 (1)

| 序号 | 编号        | 目标物 | 单位   | 测定值     | 标准<br>值 | 相对误差(%) | 允许相对误<br>差(%) | 是否 合格 |
|----|-----------|-----|------|---------|---------|---------|---------------|-------|
| 1  | QC-50μg   | 氟化物 | μg   | 53.90   | 50      | 7.80    | ≤±10          | 合格    |
| 2  | QC-100-2  | 铅   | μg/L | 102.586 | 100     | 2.59    | ≤±10          | 合格    |
| 3  | QC-100-12 | 铅   | μg/L | 108.053 | 100     | 8.05    | ≤±10          | 合格    |
| 4  | QC-100-13 | 铅   | μg/L | 105.338 | 100     | 5.34    | ≤±10          | 合格    |
| 5  | QC-100-15 | 铅   | μg/L | 93.345  | 100     | -6.66   | ≤±10          | 合格    |
| 6  | QC-100-2  | 铜   | μg/L | 107.955 | 100     | 7.96    | ≤±10          | 合格    |
| 7  | QC-100-12 | 铜   | μg/L | 92.032  | 100     | -7.97   | ≤±10          | 合格    |
| 8  | QC-100-13 | 铜   | μg/L | 108.958 | 100     | 8.96    | ≤±10          | 合格    |
| 9  | QC-100-15 | 铜   | μg/L | 98.601  | 100     | -1.40   | ≤±10          | 合格    |
| 10 | QC-100-2  | 镍   | μg/L | 97.709  | 100     | -2.29   | ≤±10          | 合格    |
| 11 | QC-100-12 | 镍   | μg/L | 97.673  | 100     | -2.33   | ≤±10          | 合格    |
| 12 | QC-100-13 | 镍   | μg/L | 95.977  | 100     | -4.02   | ≤±10          | 合格    |
| 13 | QC-100-15 | 镍   | μg/L | 95.386  | 100     | -4.61   | ≤±10          | 合格    |
| 14 | QC-100-2  | 镉   | μg/L | 99.575  | 100     | -0.42   | ≤±10          | 合格    |
| 15 | QC-100-12 | 镉   | μg/L | 97.185  | 100     | -2.82   | ≤±10          | 合格    |

广东中科检测技术股份有限公司

第 35 页 共 38 页

Guangdong Sino-Sci Testing Technology Corporation Limited



| 序号 | 编号              | 目标物                                        | 单位    | 测定值      | 标准<br>值 | 相对误差<br>(%) | 允许相对误<br>差(%) | 是否 合格 |
|----|-----------------|--------------------------------------------|-------|----------|---------|-------------|---------------|-------|
| 16 | QC-100-13       | 镉                                          | μg/L  | 101.562  | 100     | 1.56        | ≤±10          | 合格    |
| 17 | QC-100-15       | 镉                                          | μg/L  | 99.896   | 100     | -0.10       | ≤±10          | 合格    |
| 18 | QC-100-2        | 铬                                          | μg/L  | 105.203  | 100     | 5.20        | ≤±10          | 合格    |
| 19 | QC-100-12       | 铬                                          | μg/L  | 109.355  | 100     | 9.36        | ≤±10          | 合格    |
| 20 | QC-100-13       | 铬                                          | μg/L  | 109.541  | 100     | 9.54        | ≤±10          | 合格    |
| 21 | QC-100-15       | 铬                                          | μg/L  | 95.747   | 100     | -4.25       | ≤±10          | 合格    |
| 22 | QC-100-2        | 锡                                          | μg/L  | 99.225   | 100     | -0.78       | ≤±10          | 合格    |
| 23 | QC-100-12       | 锡                                          | μg/L  | 98.861   | 100     | -1.14       | ≤±10          | 合格    |
| 24 | QC-100-13       | 锡                                          | μg/L  | 93.455   | 100     | -6.54       | ≤±10          | 合格    |
| 25 | QC-100-15       | 锡                                          | μg/L  | 90.961   | 100     | -9.04       | ≤±10          | 合格    |
| 26 | QC-100-2        | 锑                                          | μg/L  | 99.175   | 100     | -0.82       | ≤±10          | 合格    |
| 27 | QC-100-12       | 锑                                          | μg/L  | 103.25   | 100     | 3.25        | ≤±10          | 合格    |
| 28 | QC-100-13       | 锑                                          | μg/L  | 96.774   | 100     | -3.23       | ≤±10          | 合格    |
| 29 | QC-100-15       | 锑                                          | μg/L  | 94.754   | 100     | -5.25       | ≤±10          | 合格    |
| 30 | QC-100-2        | 锰                                          | μg/L  | 102.746  | 100     | 2.75        | ≤±10          | 合格    |
| 31 | QC-100-12       | 锰                                          | μg/L  | 105.4    | 100     | 5.40        | ≤±10          | 合格    |
| 32 | QC-100-13       | 锰                                          | μg/L  | 101.154  | 100     | 1.15        | ≤±10          | 合格    |
| 33 | QC-100-15       | 锰                                          | μg/L  | 100.268  | 100     | 0.27        | ≤±10          | 合格    |
| 34 | QC-100-2        | 锌                                          | μg/L  | 106.011  | 100     | 6.01        | ≤±10          | 合格    |
| 35 | QC-100-12       | 锌                                          | μg/L  | 109.354  | 100     | 9.35        | ≤±10          | 合格    |
| 36 | QC-100-13       | 锌                                          | μg/L  | 108.439  | 100     | 8.44        | ≤±10          | 合格    |
| 37 | QC-100-15       | 锌                                          | μg/L  | 96.944   | 100     | -3.06       | ≤±10          | 合格    |
| 38 | 0107-石油烃<br>-QC | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | μg/mL | 458.5158 | 465     | -1.39       | ≤±20          | 合格    |
| 39 | QC-40µg         | 氨氮                                         | μg    | 41.241   | 40      | 3.10        | ≤±10          | 合格    |
| 40 | QC-4.0-1        | 砷                                          | μg/L  | 3.9684   | 4.0     | -0.79       | ≤±20          | 合格    |
| 41 | QC-4.0-5        | 砷                                          | μg/L  | 4.0818   | 4.0     | 2.04        | ≤±20          | 合格    |
| 42 | QC-4.0-1        | 汞                                          | μg/L  | 0.4214   | 0.4     | 5.35        | ≤±20          | 合格    |
| 43 | QC-4.0-5        | 汞                                          | μg/L  | 0.4152   | 0.4     | 3.80        | ≤±20          | 合格    |
| 44 | 1231-QC         | 萘                                          | μg/mL | 1.0459   | 1       | 4.59        | ≤±10          | 合格    |
| 45 | 1231-QC         | 苊                                          | μg/mL | 1.0441   | 1       | 4.41        | ≤±10          | 合格    |
| 46 | 1231-QC         | 芴                                          | μg/mL | 1.0620   | 1       | 6.20        | ≤±10          | 合格    |
| 47 | 1231-QC         | 苊烯                                         | μg/mL | 1.0699   | 1       | 6.99        | ≤±10          | 合格    |
| 48 | 1231-QC         | 菲                                          | μg/mL | 1.0742   | 1       | 7.42        | ≤±10          | 合格    |
| 49 | 1231-QC         | 蒽                                          | μg/mL | 1.0524   | 1       | 5.24        | ≤±10          | 合格    |
| 50 | 1231-QC         | 荧蒽                                         | μg/mL | 1.0340   | 1       | 3.40        | ≤±10          | 合格    |
| 51 | 1231-QC         | 芘                                          | μg/mL | 1.0143   | 1       | 1.43        | ≤±10          | 合格    |



编号: GDZKBG20231226005ZKBG

| 序号 | 编号                                         | 目标物                     | 单位    | 测定值    | 标准<br>值 | 相对误差(%) | 允许相对误<br>差(%) | 是否合格 |
|----|--------------------------------------------|-------------------------|-------|--------|---------|---------|---------------|------|
| 52 | 1231-QC                                    | 苯并(a) 蒽                 | μg/mL | 1.0326 | 1       | 3.26    | ≤±10          | 合格   |
| 53 | 1231-QC                                    | 甝                       | μg/mL | 0.9902 | 1       | -0.98   | ≤±10          | 合格   |
| 54 | 1231-QC                                    | 苯并(b) 荧蒽                | μg/mL | 1.0856 | 1       | 8.56    | ≤±10          | 合格   |
| 55 | 1231-QC                                    | 苯并(k) 荧蒽                | μg/mL | 1.0102 | 1       | 1.02    | ≤±10          | 合格   |
| 56 | 1231-QC                                    | 苯并 (a) 芘                | μg/mL | 0.9774 | 1       | -2.26   | ≤±10          | 合格   |
| 57 | 1231-QC                                    | 二苯并 (a,h) 蒽             | μg/mL | 1.0065 | 1       | 0.65    | ≤±10          | 合格   |
| 58 | 1231-QC                                    | 苯并 (g,h,i) 花            | μg/mL | 1.0244 | 1       | 2.44    | ≤±10          | 合格   |
| 59 | 1231-QC                                    | 茚并(1,2,3-c,d)<br>芘      | μg/mL | 1.0310 | 1       | 3.10    | ≤±10          | 合格   |
| 60 | QC                                         | 邻苯二甲酸二<br>辛脂            | μg    | 2.7193 | 3.0     | -4.91   | ≤±10          | 合格   |
|    | 231011SVOC<br>64-20240103<br>001 中间浓度<br>点 | 邻苯二甲酸丁<br>基苄基酯          | mg/L  | 9.813  | 10      | -1.87   | ≤±10          | 合格   |
|    | 231011SVOC<br>64-20240103<br>001 中间浓度<br>点 | 邻苯二甲酸二<br>(2-乙基己基)<br>酯 | mg/L  | 9.918  | 10      | -0.82   | ≤±10          | 合格   |

表 4.3-18 地下水校准曲线中间浓度点分析结果 (2)

| 序号 | 编号 | 目标物         | 单位   | 测定值    | 标准<br>值 | 相对偏差(%) | 允许相对偏<br>差(%) | 是否 合格 |
|----|----|-------------|------|--------|---------|---------|---------------|-------|
| 1  | QC | 苯           | μg/L | 12.009 | 12      | 0.04    | ≤20           | 合格    |
| 2  | QC | 甲苯          | μg/L | 12.506 | 12      | 2.06    | ≤20           | 合格    |
| 3  | QC | 乙苯          | μg/L | 12.611 | 12      | 2.48    | ≤20           | 合格    |
| 4  | QC | 间,对-二甲<br>苯 | μg/L | 25.152 | 24      | 2.34    | ≤20           | 合格    |
| 5  | QC | 邻-二甲苯       | μg/L | 12.416 | 12      | 1.70    | ≤20           | 合格    |
| 6  | QC | 苯乙烯         | μg/L | 12.721 | 12      | 2.92    | ≤20           | 合格    |

#### 4.3.4.4 准确度控制总结

土壤和地下水进行准确度试验,准确度要求依据 HJ/T 166-2004 《土壤环境监测技术规范》、HJ 164-2020《地下水环境监测技术规范》以及相应的检测方法进行判定,上述结果表明,本项目准确度合格率为 100%,满足技术规定中样品分析测试准确度要求达到 100%的要求,准确度符合要求。

Stt CDGVDCCCCC

编号: GDZKBG20231226005ZKBG

#### 5、监测过程中受到干扰时的处理

检测过程中受到干扰时,按有关处理制度执行。一般要求如下:停水、停电、停气等,凡影响到检测质量时,全部样品重新测定。仪器发生故障时,可用相同等级并能满足检测要求的备用仪器重新测定。无备用仪器时,将仪器修复,重新检定合格后重测。

#### 6、报告及原始记录的质量控制

分析检测结束后,按照质量保证要求,对实验室数据及原始记录进行校对和初审,保证实验数据的准确无误。实验数据审核执行三级审核制,第一级为采样或分析人员之间的相互校对,第二级为科室(或组)负责人的校核,第三级为技术负责人(或授权签字人)的审核签发。

- (1) 实验室分析原始记录包括分析试剂配制记录、标准溶液配制及标定记录、校准曲线记录、各监测项目分析测试原始记录、内部质量控制记录等。
- (2)分析原始记录包含足够的信息,以便在可能情况下找出影响不确定度的因素,并使实验室分析工作在最接近原来条件下能够复现。记录信息包括样品名称,样品编号,样品性状,采样时间和地点,分析方法依据,使用仪器名称和型号、编号,测定项目,分析时间,环境条件,标准溶液名称、浓度、配制日期,校准曲线,取样体积,计量单位,仪器信号值,计算公式,测定结果,质控数据,测试分析人员、校对人员签名等。
- (3)在测试分析过程中及时、真实填写原始记录,不得凭追忆事后补填或抄填。记录应使用墨水笔或签字笔填写,要求字迹端正、清晰。原始记录不得涂改。当记录中出现错误时,应在错误的数据上划一横线(不得覆盖原有记录的可见程度),如需改正的记录内容较多,可用框线画出,在框边处添写"作废"两字,并将正确值填写在其上方。所有的改动处应有更改人签名或盖章。对于测试分析过程中的特殊情况和有必要说明的问题,应记录在备注栏内或记录表边旁。

### 7、质量控制结论

本项目按照技术方案和相关规范标准对土壤、地下水分别进行空白试验,精密度、 准确度试验,测定结果均在控制范围内,符合技术方案和相关规范的要求。

\*\*\*报告结束\*\*\*